
The gallant tailor: seven (flies) in one blow.

IBM 704: 220 theorems (in the propositional calculus) in three minutes.

HaoWang

Toward Mechanical Mathematics

Abstract: Results are reported here of a rather successful attempt at proving aU theorems, totalling near

400, of Principia Mathematica which are strictly in the realm of logic, viz., the restricted predicate cal

culus with equality. A number of other problems of the same type are discussed. It is suggested that the

time is ripe for a new branch of applied logic which may be called "inferential" analysis, which treats

proofs as numerical analysis does calculations. This discipline seems capable, in the not too remote future,

of leading to machine proofs of difficult new theorems. An easier preparatory task is to use machines to

formalize proofs of known theorems. This line of work may also lead to mechanical checks of new mathe

matical results comparable to the debugging of a program.

2

Introduction

If we compare calculating with proving, four differences
strike the eye: (1) Calculations deal with numbers;
proofs, with propositions. (2) Rules of calculation are
generally more exact than rules of proof. (3) Procedures
of calculation are usually terminating (decidable, recur
sive) or can be made so by fairly well-developed rneth
ods of approximation. Procedures of proof, however,
are often nonterminating (undecidable or nonrecur
sive, though recursively enumerable), indeed incomplete
in the case of number theory or set theory, and we do not
have a clear conception of approximate methods in
theorem-proving. (4) We possess efficient calculating
procedures, while with proofs it frequently happens that
even in a decidable theory, the decision method is not
practically feasible. Although short-cuts are the excep
tion in calculations, they seem to be the rule with proofs
in so far as intuition, insight, experience, and other
vague and not easily imitable principles are applied.
Since the proof procedures are so complex or lengthy,
we simply cannot manage unless we somehow discover
peculiar connections in each particular case.

Undoubtedly it is such differences that have discour
aged responsible scientists from embarking on the enter
prise of mechanizing significant portions of the activity
of mathematical research. The writer, however, feels that
the nature and the dimension of the difficulties have been
misrepresented through uncontrolled speculation and
exaggerated because of a lack of appreciation of the
combined capabilities of mathematical logic and calcu
lating machines.

Of the four differences, the first is taken care of either
by quoting Godel representations of expressions or by
recalling the familiar fact that alphabetic information
can be handled on numerical (digital) machines. The
second difference has largely been removed by the
achievements of mathematical logic in formalization duro
ing the past eighty years or so. Item (3) is not a differ
ence that is essential to the task of proving theorems by
machine. The immediate concern is not so much theo
retical possibility as practical feasibility. Quite often a
particular question in an undecidable domain is settled
more easily than one in a decidable region, even me-

IBM JOURNAL' JANUARY 1960

chanically, We do not and cannot set out to settle all
questions of a given domain, decidable or not, when, as
is usually the case, the domain includes infinitely many
particular questions. In addition, it is not widely realized
how large the decidable subdomains of an undecidable
domain (e.g., the predicate calculus) are. Moreover,
even in an undecidable area, the question of finding a
proof for a proposition known to be a theorem, or formal
izing a sketch into a detailed proof, is decidable theo
retically. The state of affairs arising from the Godel
incompleteness is even less relevant to the sort of work
envisaged here. The purpose here is at most to prove
mathematical theorems or the usual kind, e.g., as exem
plified by treatises on number theory, yet not a single
"garden-variety" theorem of number theory has been
found unprovable in the current axiom system of number
theory. The concept of approximate proofs, though unde
niably of a kind other than approximations in numerical
calculations, is not incapable of more exact formulation
in terms of, say, sketches of and gradual improvements
toward a correct proof.

The last difference is perhaps the most fundamental.
It is, however, easy to exaggerate the degree of com
plexity which is necessary, partly because abstract esti
mates are hardly realistic, partly because so far little
attention has been paid to the question of choosing more
efficient alternative procedures. There will soon be oc
casion to give illustrations to these two causes of exag
geration. The problem of introducing intuition and
experience into machines is a bit slippery. Suffice it to
say for the moment, however, that we have not realized
that much of our basic strategies in searching for proofs
is mechanizable, because we had little reason to be articu
late on such matters until large, fast machines became
available. We are in fact faced with a challenge to devise
methods of buying originality with plodding, now that we
are in possession of slaves which are such persistent plod
ders. In the more advanced areas of mathematics, we
arc not likely to succeed in making the machine imitate
the man entirely. Instead of being discouraged by this,
however, one should view it as a forceful reason for ex
perimenting with mechanical mathematics. The human
inability to command precisely any great mass of details
sets an intrinsic limitation on the kind of thing that is
done in mathematics and the manner in which it is done.
The superiority of machines in this respect indicates that
machines, while following the broad outline of paths
drawn up by man, might yield surprising new results by
making many new turns which man is not accustomed to
taking.

It seems, therefore, that the general domain of algo
rithmic analysis can now begin to be enriched by the
inclusion of inferential analysis as a younger companion
to the fairly well established but still rapidly developing
leg of numerical analysis.

The 'writer began to speculate on such possibilities in
1953, when he first came into contact with calculating
machines. These vague thoughts were afterwards ap
pended to a paper on Turing machines'! Undoubtedly

many people have given thought to such questions. As
far as the writer is aware, works more or less in this area
include Burks-Warren-Wright.s Collins," Davis.! Newell
Shaw-Simon, Gelernter.P Of these, the most extensively
explained and most widely known is perhaps that of
Newell-Shaw-Simon, a series of reports and articles"
written since 1956. Their work is also most immediately
relevant to the results to be reported in this paper. It
will, therefore, not be out of place if we indicate the
basic differences in the respective approaches and the
specific advances beyond their work.

They report" that their program LT on JOHNNIAC
was given the task of proving the first 52 theorems of
Principia Mathematlca of Whitehead and Russell: "Of
the 52 theorems, proofs were found for a total 38. ... In
14 cases LT failed to find a proof. Most of these unsuc
cessful attempts were terminated by time or space limita
tions. One of these 14 theorems we know LT cannot
prove, and one other we believe it cannot prove." They
also give as examples that a proof for *2.45 was found
in 12 minutes and a report of failure to prove *2.31 was
given after 23 minutes.

The writer wrote three programs last summer on an
IBM 704. The first program provides a proof-decision
procedure for the propositional calculus which prints out
a proof or a disproof according as the given proposition
is a theorem or not. It was found that the whole list of
over 200 theorems of the first five chapters of Principia
Mathematica were proved within about 37 minutes, and
12/13 of the time is used for read-in and print-out, so
that the actual proving time for over 200 theorems was
less than 3 minutes. The 52 theorems chosen by Newell
Shaw-Simon are among the easier ones and were proved
in less than 5 minutes (or less than Y2 minute if not
counting input-output time). In particular, *2.45 was
proved in about 3 seconds and *2.31 in about 6 seconds.
The proofs for these two theorems and some more com
plex proofs are reproduced in Appendix I as they were
printed out on the machine.

The other two programs deal with problems not con
sidered by Newell-Shaw-Simon in their published works.
The second program instructs the machine to form
propositions of the propositional calculus from basic
symbols and select nontrivial theorems. The speed was
such that about 14,000 propositions were formed and
tested in one hour, storing on tape about 1000 theorems.
The result was disappointing in so far as too few theo
rems were excluded as being trivial, because the princi
ples of triviality actually included in the program were
too crude.

The third program was meant as part of a larger pro
gram for the whole predicate calculus with equality
which the writer did not have time to complete during
19508. The predicate calculus with equality takes up
the next five chapters of Principia Mathematica with a
total of over 150 theorems. The third program as it
stands can find and print out proofs for about 85% of
these theorems in about an hour. The writer believes that
slight modifications in the program will enable the rna-

IB:I.1 JOURNAL' JANUARY 196C

4

chine to prove all these theorems within 80 minutes or so.
The full program, as envisaged, will be needed only when
we come to propositions of the predicate calculus which
are much harder to prove or disprove than those in this
part of Principia Mathematica.

It will naturaI.ly be objected that the comparison with
the program of Newell-Shaw-Simon is unfair, since the
approaches are basically different. The writer realizes
this but cannot help feeling, all the same, that the com
parison reveals a fundamental inadequacy in their ap
proach. There is no need to kill a chicken with a
butcher's knife. Yet the net impression is that Newell
Shaw-Simon failed even to kill the chicken with their
butcher's knife. They do not wish to use standard algo
rithms such as the method of truth tables.f because "these
procedures do not produce a proof in the meaning of
Whitehead and Russell. One can invent 'automatic' pro
cedures for producing proofs, and we will look at one
briefly later, but these turn out to require computing
times of the orders of thousands of years for the proof
of "2,45," It is, however, hard to see why the proof of
*2.45 produced by the algorithms to be described in this
paper is less acceptable as a proof, yet the computing
time for proving *2.45 is less than JA second by this algo
rithm. To argue the superiority of "heuristic" over algo
rithmic methods by choosing a particularly inefficient
algorithm seems hardly just.

The word "heuristic" is said to be synonymous with
"the art of discovery," yet often seems to mean nothing
else than a partial method which offers no guarantees of
solving a given problem. This ambiguity endows the
word with some emotive meaning that could be mislead
ing in further scientific endeavors. The familiar and less
inspiring word "strategy" might fare better.

While the discussions by Newell-Shaw-Simon are
highly suggestive, the writer prefers to avoid hypothetical
considerations when possible. Even though one could
illustrate how much more effective partial strategies can
be if we had only a very dreadful general algorithm, it
would appear desirable to postpone such considerations
till we encounter a more realistic case where there is no
general algorithm or no efficient general algorithm, e.g.,
ill the whole predicate calculus or in number theory. As
the interest is presumably in seeing how well a particular
procedure can enable us to prove theorems on a machine,
it would seem preferable to spend more effort on choosing
the more efficient methods rather than on enunciating
more or less familiar generalities. And it is felt that an
emphasis on mathematical logic is unavoidable, because
it is just as essential in this area as numerical analysis is
for solving large sets of simultaneous numerical equa
tions.

The logical methods used in this paper are along the
general line of cut-free formalisms of the predicate cal
culus initiated by Herbrand \} and Gentzen.!? Ideas
of Hilbert-Bernays.t! Dreben.P Beth,IS Hintlkka.>'
Schutte 15 and many others on these formulations, as well
as some from standard decision methods for subdomains
of the predicate calculus presented by Church 1{. and

Quine.l" are borrowed. The special formulations actually
used seem to contain a few minor new features which
facilitate the use on machines. Roughly speaking, a com
plete proof procedure for the predicate calculus with
equality is given which becomes a proof-decision proce
dure when the proposition to be proved or disproved
falls within the domain of the propositional calculus
Or that of the "AE predicate calculus?" which includes
the monadic predicate calculus as a subdomain.

The treatment of the predicate calculus by Herbrand
and Gentzen enables us to get rid of every "Umweg"
(cut Of modus ponensy so that we obtain a cut-free cal
culus in which, roughly speaking, for every proof each
of the steps is no more complex than the conclusion.
This naturally suggests that, given any formula in the
predicate calculus, we can examine all the less complex
formulae and decide whether it is provable. The reason
that this does not yield a decision procedure for the
whole predicate calculus is a rule of contraction which
enables us to get rid of a repetition of the same formula.
As a result, in searching for a proof or a disproof, we
may fail in some case because we can get no proof, no
matter how many repetitions we introduce. In such a
case, the procedure can never come to an end, although
we do not know this at any finite stage. While this situa
tion does not preclude completeness, it does exclude a
decision procedure.

Now if we are interested in decidable subdomains of
the predicate calculus, we can usual.ly give suitable re
formulations in which the rule of contraction no longer
occurs. A particularly simple case is the propositional
calculus, Here we can get a simple system which is both
a complete proof procedure and a complete decision pro·
cedurc. The completeness receives a very direct proof.
and as a decision procedure it has an advantage over
usual procedures in that if the proposition tested is prova
ble, we obtain a proof of it directly from the test. This
procedure is coded in Program I. Moreover, it is possible
to extend the system for the propositional calculus to get
a proof-decision procedure for the AE predicate calcu
lus, which has the remarkable feature that in searching
for a proof for a given proposition in the "miniscope"
form, we almost never need to introduce any premise
which is longer than its conclusion. This procedure is
coded in Program III.

A rather surprising discovery, which tends to indicate
our general ignorance of the extensive range of decidable
subdomalns, is the absence of any theorem of the predi
cate calculus in Principia which does not fall within the
simple decidable subdornain of the AE predicate calcu
lus. More exactly, there is a systematic procedure of
separating variables to bring a proposition into the
"miniscope" form, a term to be explained below. Since
this procedure can be easily carried out by hand or by
machine for these particular theorems, every theorem 'in
the predicate calculus part of Principia can then be
proved by the fairly simple Program III.
"Those propositions which can be transformed into a form in which
no ~xhlenti"l quantifier governs any universal quantifier.

IBM JOURNAL' JANUARY 1960

Originally the writer's interest was in formalizing
proofs in more advanced domains, such as number theory
and differential calculus. It soon became clear that for
this purpose a pretty thorough mechanization of the un
derlying logic is a necessary preliminary step. Now that
this part is near completion, the writer will discuss in the
concluding part of this paper SOme further possibilities
that he considers to be not too remote.

Work for this paper was done at the Poughkeepsie
IBM Research Laboratory in the summer of 1958. The
writer much appreciates the satisfactory working condi
tions, especially the stimulating suggestions of friends in
the Laboratory and the easy access to a good calculating
machine.

The propositional calculus (System P)

Since we are concerned with practical feasibility, It IS

preferable to use more logical connectives to begin with
when we wish actually to apply the procedure to concrete
cases. For this purpose we use the five usual logical con
stants ~ (not), & (conjunction), v (disjunction), :J (im
plication), = (biconditional), with their usual interpre
tations.

A propositional letter P, Q, R, Mol' N, et cetera, is a
formula (and an "atomic formula"). If 9,0/ are formu
lae, then ~ ¢, cP & 0/, ¢ v 1{, ¢ :J 0/. 1> = 1{ arc formulae. If
7T, P are strings of formulae (each, in particular, might be
an empty string or a single formula) and 1J is a formula,
then 7T, ¢' P is a string and 7T ---+ P is a sequent which, in
tuitively speaking, is true if and only if either some for
mula in the string 7T (the "antecedent") is false or some
formula in the string p (the "consequent") is true, i.e.,
the conjunction of all formulae in the antecedent implies
the disjunction of all formulae in the consequent.

There are eleven rules of derivation. An initial rule
states that a sequent with only atomic formulae (propo-

sition letters) is a theorem if and only if a same formula
occurs on both sides of the arrow. There are two rules
for each of the five truth functions-one introducing it
into the antecedent, one introducing it into the conse
quent. One need only reflect on the intuitive meaning of
the truth functions and the arrow sign to be convinced
that these rules are indeed correct. Later on, a proof will
be given of their completeness, i.e., alI intuitively valid
sequents are provable, and of their consistency, i.e., all
provable sequents are intuitively valid.

P1. Initial rule: if A, 1;, are strings of atomic formulae,
then A~ 1;, is a theorem if some atomic formula oc
curs on both sides of the arrow.

In the ten rules listed below, A and 1;, are always
strings (possibly empty) of atomic formulae. As a proof
procedure in the usual sense, each proof begins with a
finite set of cases of P1 and continues with successive
consequences obtained by the other rules. As will be ex
plained below, a proof looks like a tree structure growing
in the wrong direction. We shall, however, be chiefly in
terested in doing the steps backwards, thereby incorpo
rating the process of searching for a proof.

The rules are so designed that given any sequent, we
can find the first logical connective, i.e., the leftmost sym
bol in the whole sequent that is a connective, and apply
the appropriate rule to eliminate it, thereby resulting in
one or two premises which, taken together, are equiva
lent to the conclusion. This process can be repeated until
we reach a finite set of sequents with atomic formulae
only. Each connective-free sequent can then be tested for
being a theorem or not, by the initial rule. If all of them
are theorems, then the original sequent is a theorem and
we obtain a proof; otherwise we get a counterexample
and a disproof. Some simple samples will make this clear.

-------~_._---------------

P2a. Rule ---+ ~: If cp, 1;,~ A, o, then 1;,~ A, ~ ¢, p.

P2b. Rule ~ ---+: If A, P~7T, ¢, then A, ~ cP' p~To.

P3a. Rule ~ &: If 1;,~ A, ¢' p and 1;,~ A, 0/, p, then 1;, ---+ A, cP & 1, p.

P3b. Rule &~: If A, cp, 0/, p~ To, then :t, ¢ & 0/, p~ 7T.

P4a. Rule ~v; If ?: ~:t, cP' t/;, p, then l:~ A, cp v 0/, p.

P4b. Rule v ---+: If A, cP' p ---+ 7T and A, .;., p~ ,7, then A, ¢ v 0/, p~ To.

P5a. Rule ~:J : If 1;" ¢ ~ A, 0/, p, then 1;,~ A, cP :J 0/, p.

P5b. Rule :J ---+: If A, 0/, p~ 7T and A, p~ 7T, ¢, then A, cP :J 0/, p ---+ 7"[.

P6a. Rule ---+ =: If ¢' ?:~ A, 0/, p and 1jJ, 1;,~ A, cP, p, then 1;, ---+ A, 9 - ~, p.

P6b. Rule = ---+: If cp, 0, A, p~ 7T and A, p ---+ 7T, ¢, 0/, then :t, ¢ = >jJ, p ---+ 7:". 5

IBM JOURNAL' JANUARY 1960

For example, given any theorem of Principia, we can
automatically prefix an arrow to it and apply the rules to
look for a proof. When the main connective is :J, it is
simpler, though not necessary, to replace the main con
nective by an arrow and proceed. For example:
*2.45. f-: -(PvQ)':::l' - P,
*5.21: f-:-P&-Q':::l'P Q
can be rewritten and proved as follows.
*2.45 - (P v Q)---?> - P (1)

(1) ---?> - P, PvQ (2)
(2) P---?>PvQ (3)
(3) P---?>P, Q

VALID

and the one-dimensional arrangement we use is:
(1), (1,2), (2,3), (2,4), (4,5), (1,6), (6,7), (7,8), (7,9).

The whole program has about 1000 lines. The length
of the sequents to be tested is deliberately confined to
72 symbols, so that each sequent can be presented by a
single punched card. Although this restriction can be re
moved, it makes the coding considerably easier and gives
ample room for handling the problems on hand. Thus,
for instance, the longest theorem of the propositional
calculus in Principia, 5*24, has only 36 symbols. When
presented with any punched card, the program enables
the machine to proceed as follows.

Copy the card into the reserved core storage CaLl to
COL72 (72 addresses in all) in the standard BCD nota
tion, i.e., a conventional way of representing symbols by
numbers, one symbol in each address. Append the num
ber 1 at the last address, viz., COL72. Search for the
arrow sign. If it does not occur, then the line is regarded
as ordinary prose, printed out without comment, and
the machine begins to study the next card. In particular,
the machine stops if the card is blank. If the arrow sign
occurs, then the machine marks all symbols before the
arrow sign as negative and proceeds to find the earliest
logical connective. According as it is F, C, D, I, or S, the
machine turns to RTNF, RTNC, RTND, RTNI. or
RTNB. In each case the proper rule is applied according
as whether the connective is before or after the arrow.

After COLI to COL72, 144 addresses are reserved for
getting the one or two premises. As soon as the premises
are found according to the proper rule, the original line
is printed out and the first premise is shifted into COLI
to COI.72 and gets the next number for its identification.
If there is a second premise, it has to be shifted away to
the idle section and wait for its turn. When the line in
COLl to COL 72 contains no more logical connectives.
the machine goes to a COMPARE routine to determine
whether there is a formula occurring on both sides of the

With the longer examples in Appendix I, the reader
will observe that the numbers on the right serve to iden
tify the lines, while the numbers on the left serve to iden
tify the conclusions for which the numbered lines are
premises. Essentially each proof is a tree structure. Since
we have to arrange the lines in a one-dimensional array,
there is a choice among various possible arrangements.
The one chosen can be seen from the example 4*45 given
in Appendix I. The tree structure would be:

(1)
(2)
(3)
(4)
(5)

QED

v

&
B
C
D
F
I :J

Moreover, we use a modified Polish notation by putting,
for example, CFP •FQ instead of - P & - Q. By putting
the connective at the beginning, we can more easily
search for it. The use of dots for grouping makes it easier
to determine the two halves governed by a binary con
nective. The reader will have no difficulty in remember
ing these notational changes if he compares the examples
>1<2.45 and *5.21 with the corresponding proofs in the
new notation given in Appendix I.

*5.21. ---?> - P& _ Q·.:::l·P Q
(1) -P&-Q---?>P=Q
(2) - P, - Q---?>Ps:= Q
(3) - Q---?>P=Q, P
(4) ---?>P=Q, P, Q
(5) P---?>Q.P,Q

VALID
(5) Q---?>P, P, Q

VALlD
QED

These proofs should be self-explanatory. They are essen
tially the same as the proofs printed out by the machine,
except that certain notational changes are made both to
make the coding easier and to avoid symbols not availa
ble on the machine printer. The reader may wish to read
the next section, which explains these changes, and then
compare these with more examples of actual print-outs
reproduced in Appendix 1. It is believed that these Con
crete examples will greatly assist the understanding of
the procedure if the reader is not familiar with mathe
maticallogic.

• Program I: The propositional calculus P

There is very little in the program which is not straight
forward. To reserve the dot for other purposes and to
separate the numbering from the rest, we write, for
example, 2*45/ instead of *2.45.

For the other symbols, we use the following dictionary:
---?>

6

IBM JOURNAL'JANUARY 1960

arrow or not and prints the line out with VALID or NOT
VALID appended to it. Then it looks at the idle section
to see whether any earlier premises remain there. If there
is, it moves the first line there into COLI to COL72 and
pushes the remaining lines of the idle section to fill up the
vacancy. If there is no more line left then it concludes,
according as whether all final sequents are valid, that the
original sequent is a theorem (QED) or not (NOT
VALID). When the original sequent is not a theorem,
the conjunction of all the resulting nonvalid connective
free sequents amounts to a conjunctive normal form of
the original sequent.

Several alternatives are permitted by putting down
suitable sense switches. If the interest is to determine
merely whether the given sequent is a theorem, it is nat
ural to stop as soon as a nonvalid, connective-free se
quent is found. This is indeed taken as the normal proce
dure in the program. Another permissible choice is to
omit the proofs or disproofs altogether but only print out
the final answer. A third possible choice is to give the
output by punching cards rather than by printing. The
possibility of omitting the proof or the disproof enables
us to separate the calculating time from the input-output
time.

While the program is sufficiently fast for testing propo
sitions we ordinarily encounter, it is not the most efficient
testing procedure for more complex propositions. If the
purpose is to find an isolated fast-test procedure just for
the propositional calculus, and not to obtain at the same
time a proof procedure which can be combined naturally
with proofs in more advanced domains, it is possible to
find much more efficient methods. For example, B. Dun
ham, R. Fridshal, and G. Sward t have one which is
being coded by them.

On the other hand, the storage needed is not large.
Not only is each theorem proved from scratch so that
earlier theorems need not bc kept in the store, but in
each proof there is no need to keep all the intermediate
lines. In fact, at any time the machine needs to keep in
its store at most one line from each level of the proof in
its tree form.

This can be made clear by thc following example:

6*6/-BBBBBQR. P,. BQR ••. BBPQ .. BP. BQR .. ,.
BP •• BQ,BQR.

There are 13 occurrences of B (if and only if) in this
theorem. Since every elimination of B gives two new
branches, the complete proof consists of 214 -1, or about
16,000 lines. Yet at no time need the machine keep in
the store for the idle section more than 13 lines. If we
use one address for each symbol, we need 72 X 13 ad
dresses for this; if we pack up these idle lines, we need
only 12 X 13 addresses, a very small number for such a
long proof. The length of the proof, incidentally, illus
trates how inefficient the procedure can be for certain
long propositions. While the complexity of the ordinary
truth-table test is determined by the number m of distinct

[All at the rBM Poughkeepsie Research Laboratory.

proposition letters (2m rows) and the number n of dis
tinct subformulae (n columns), the length of proof of
the present approach is determined by the number k of
occurrences of propositional connectives, i.e., 2/,;+1_1
lines or less, since in many cases a conclusion has only
one instead of two premises.

The estimated running time for a complete proof of
the above theorem with all steps printed out on line is
about five hours (about 2500 of the 16,000 lines were
printed out in 48 minutes or so). On the other hand, if
the proof is not printed out, it takes the machine less than
30 minutes to get the answer. Hence, about 12/13 of
the time is spent in reading and printing out. Since
axioms and definitions are not used in this approach,
they are taken as theorems to be proved, and one arrives
at about 220 theorems from the first five chapters of
Principia. These were proved in about 37 minutes. When
only the theorems themselves and the answers (i.e.,
QED) are printed out, it takes 8 minutes. The actual cal
culating time, i.e., not counting the input-output time, is
less than 3 minutes.

• Program II: Selecting theorems in the propositional
calculus

A natural question to ask is "Even though the machine
can prove theorems, can it select the theorems to be
proved?" A very crude experiment in this direction was
made with some quite preliminary results. These will be
reported here, not for their intrinsic interest, but for sug
gesting further attempts on the same line. The motive is
quite simple: by including suitable principles of triviality,
the machine will only select and print out less trivial
theorems. These may in turn suggest further principles
of triviality; after a certain stage, one would either arrive
at essentially the same theorems which have already been
discovered and considered interesting, or find in addition
a whole crowd of interesting new theorems.

The machine has been made to form a fairly large
class of propositions (sequents) and select "interesting"
theorems from them. At first all formulae with exactly
six symbols containing at most the propositional letters
P, Q, R are formed. These come to a total of 651, of
which 289 are basic and 362 are trivial variants obtaina
ble from the basic ones by renaming the propositional
letters. Of these 651 formulae, I 07 are theorems. The
program enables the machine to form these formulae,
one stored in a single address, and select the theorems
among them, prefixing each with a minus sign.

Then the machine is to form all non-ordered pairs
(7T, p) such that either Tr or p is (or both are) among the
289 basic formulae and for each pair (7T, p), the se
quents Tr ~ p, P~ tr, sr, p~, ~ 7T, p, when neither tr nor
p is a theorem. When Tr, p arc the same, tr ~ p, P~ 77,

~ rr, P arc not formed. These are the only principles of
triviality which are included. Thus, the distinction be
tween basic formulae and their variants avoids the neces
sity of testing that large number of sequents which are
variants of other tested sequents, Moreover, if either Tr or
p is a theorem, ~ 1T, P is a trivial consequence, ;T, p~ is 7

IBM JOURNAL'JANUARY 1960

8

a trivial variant of P» p -~ or ~, 11" --7; moreover, then
11"--7 P (or p --7 1:') is a theorem, and a trivial one, if and
only if p (or 7.) is a theorem. Finally, 11"--711" is always a
trivial theorem.

It was at first thought that these crude principles are
sufficient to cut down the number of theorems to a de
gree that only a reasonably small number of theorems
remain. It turns out that there arc still too many theo
rems. The number of theorems printed out after running
the machine for a few hours is so formidable that the
writer has not even attempted to analyze the mass of
data obtained. The number of sequents to be formed is
about half a million, of which about 1/14 are theorems.
To carry out the whole experiment would take about
40 machine hours.

The reason that such a high portion are theorems
comes from the bias in our way of forming sequents. If
we view an arbitrary truth table with n proposition let
ters, since the table gives a theorem if and only if every
row gets the value true and there are 2" rows, the proba
bility of getting a theorem is 1/2 (2"). In particular, if
n x: 3, we get 1/256. However, the sequents 1:' --7 p, P -:> 71",

--77r,p, 11",p~ amount to ~'7r"P, ~P"7r, £'''71",
~ P V ~ 7., each being a disjunction, Hence, the proba
bility is much higher since the probability of ¢ "V being
true is %. If there are three proposition letters, we
have (%)8, which is about 1/10. The few crude princi
pies of triviality, besides cutting the sequents to be tested
to less than half, reduces this percentage to about 1/.14.
It would seem dear that other principles of triviality
should be devised and included, e.g. if,,:::.;; p and. ® (7T)
are theorems, (j)(p) is a trivial consequence which need
not be recorded.

In the actual program, input cards are used to assign
the region of sequents to be formed and tested, since
otherwise the machine would simply run continuously
for about 40 hours until all sequents are formed and
tested. Each sequent formed is retained in a reserved re
gion of the core memory or simply thrown away, ac
cording as it has been found to be a theorem or a non
theorem. When all sequents required by the input card
have been tested or when the reserved region has been
filled up, the theorems obtained to date are transferred
onto a tape which afterwards is printed out off-line. Just
as a curiosity, a very small random consecutive sample
of the print-out is reproduced in Appendix If.

• Completeness and consistency of the systems P and P;

A simple proof for the consistency and the completeness
of the system P is possible. Since, however, such con
siderations become even shorter if fewer truth-functional
connectives are used, a system P; based on the single
stroke I connective (not both) will be given and proved
consistent, as well as complete. It will then be clear that
a similar proof applies to the system P.

The formulae and sequent'! are specified as with the
system P except that the clause on forming new formu
lae is now merely: if ¢ and if; are formulae, then .p I>f is

a formula. There are only three rules:

P.l. Same as PI.

If A and ~ are (possibly empty) strings of atomic for
mulae, then:

P82. If ¢' tj;, ~ --7 A, p, then ~ --7 A, cf> I if!, p.

P83. If A, p --7 7T, cf> and A, P --7 71", \1;,

then A, cf> 1>/I, p --7 71".

Consistency of the calculus P8 • One can easily verify
by the intended interpretation of the arrow and the
comma that P.l is valid, i.e., true in every interpretation
of the atomic formulae, that the conclusion of P82 is
valid if (and only if) its premise is, and that the conclu
sion of P.3 is valid if (and only if) its premises are. It
follow's that every provable sequent is valid.

Completeness of the calculus p •. We wish to prove
that every sequent, if valid, is prova?le. Given ~~y se
quent, we find the earliest non-atomic formula,. it ~ny,

in the antecedent, and apply P~3 in reverse direction,
thereby obtaining two premises, each with less occur
rences of I . If there is no I in the antecedent, we find the
earliest, if any, occurrence of ' in the consequent and ap~

ply Po2 in reverse direction. We then repeat the same pr?
cedure with the results thus obtained. This process wlll
be continued with each sequent until i no longer occurs.
Since there are only finitely many occurrences of i in each
sequent, this process always comes to an end and the.n
we have a finite class of sequents in which only atomic
formulae occur. Now the original sequent is valid if and
only if every sequent in the class is. But a sequent with
only atomic formulae is valid if and only if it is a caso of
p.l, and we can decide effectively in each case whether
this is so. Hence, the calculus is complete and we have
a decision procedure for provability which yields auto
matically a proof for each provable sequent.

The propositional calculus with equality (System P,,)

It is convenient. though not necessary, to add the
equality sign = before introducing quantifiers. This pro
cedure serves to stress the fact that equality is more ele
mentary than quantifiers, even though customarily quan
tifiers are presented prior to equality. The changes
needed to reach this system from the system P are rather
slight. Variables X, Y, Z, S, 1', U, V, W, et cetera, are
now taken as terms, and the domain of atomic formulae
are extended to include all expressions of the form a=/i
when a and f3 are terms.

The only additional rules necessary for equality are an
extension of the initial rule Pl so that in addition to the
rules Pi to P6b of the system P, we now have: If ,\, tare
strings (possibly empty) of atomic formulae, then:

P7. A--7 {; is a theorem if there is a term a such that a=a

occurs in~.

P8. A--7 t. is a theorem if a= f3 occurs in .\ and A --7 {;'is a
theorem, where ~' is obtained from f:by substituting
a (or (3) for some or all occurrences of (3 (or a).

IBM JOURNAL. JANUARY 1960

It is quite easy to extend Program I to obtain a pro
gram for the system Pe. The writer, however, did not
write a separate program for Pe but includes such a pro
gram as a part in Program HI. This part enables the ma
chine to proceed exactly as in Program I except that, in
testing whether a sequent of atomic formulae is a theo
rem, the machine does not stop if the sequent is not a
theorem by the initial rule P1 but proceeds to determine
whether the sequent can be shown to be a theorem by
using the additional initial rules P7 and P8. To distin
guish sequents of atomic formulae which are valid truth
functionally from those which become valid only after
applying P7 or P8, the former case is marked with VA
only, while the latter case is marked in addition by =.
Examples of print-outs are given in Appendix III.

The longish example *13.3 is included to make a
minor point. It has been suggested that it would be in
teresting if the machine discovers mistakes in Principia.
This example may be said to reveal a mistake in Principia
in the following sense. The authors of Principia proved
this theorem by using *10.13 and *10.221 from the predi
cate calculus. From the discussion attached to the proof
of this theorem, it seems clear that the authors consid
ered this as a theorem which presupposes the predicate
calculus. Yet in the proof printed out by the machine,
no appeal to anything beyond the system P, i.e., no ap
peal even to the additional rules P7 and P8 is made.
This is revealed by the fact that all the sequents of atomic
formulae, viz., lines 6, 10, 14, 18, 24, 28, 32, 36 in the
proof, are marked with VA without the additional =
sign. At first the writer thought this indicates a mistake
in the program. An examination of the theorem shows,
however, that *13.3 is indeed a theorem of the proposi
tional calculus- In fact, Program 1 alone would yield es
sentially the same proof.

• Preliminaries to the predicate calculus

Thus fat an attempt has been made to avoid heavy tech
nicalities from symbolic logic. A few more exact defini
tions seem necessary, however, when one comes to the
predicate calculus.

Formulae, terms, and sequents of the full predicate
calculus arc specified as follows. Basic symbols are =;
the five truth-functional connectives; the two quantifica
tion symbols for "all" and "some"; proposition letters
P, Q, R, et cetera; predicate letters G, H, J, K, et cetera;
variables X, Y, Z, et cetera; function symbols I, g, h, et
cetera; numerals 1, 2, ... , 9, et cetera; dots or paren
theses for grouping. Terms are: (i) a variable is a term;
(ii) a numeral is a term; (iii) if a, [3, et cetera are terms
and (T a function symbol, then (T a, (T a [3, et cetera, are
terms. A variable or a numeral is a simple term; other
terms are composite. The five truth-functional connectives
and two quantification symbols are called logical con
stants. Atomic formulae are: 0) proposition letters;
(ii) a=(3, when a, f3 are terms; (iii) G a, H 0l[3, et cet
era, where a, (3. et cetera are terms. Formulae are: 0)
atomic formulae are formulae; (ii) if ,p, >f are formulae,
-¢' ¢v</-', 4>~I/J, 4>=1jJ, 4>&lj;, (Ea),p, (a)ep are

formulae, where a is a variable, A string may be empty
or a single formula, and if ..., pare nonempty strings 'IT,

p is a string. Given any two strings 'IT and p, 'IT --? P is a
sequent.

Intuitively the scope of a logical constant is clear. In
mechanical terms, the method of finding the scope of a
logical constant in a given formula depends on the nota
tion. According to the notation actually chosen for the
machine, .p v 1f!, ep & 0/, .p ~.;;, <P = 1/; are written as
D ep-tf, C <P~o/, 1.p__1/;, B <p-f, with the blank filled
in by a string of dots whose number is one larger than
the longest string in ,p and t/J except that no dot is
used when both ep and .p are proposition letters. These
and related details in the notation can be understood
easily from the Appendices. Given a sequent, the scope
of a logical constant I' standing at the beginning of a
whole formula in the sequent is the entire formula minus
r. If T is singulary, that is, - or one of the two quan
tification symbols, the scope of the next logical constant
I" in the formula, if any, is the whole remaining part
of the formula minus I", If T is binary, then its scope
breaks into two parts at the longest string of dots in the
scope and each part, if containing a logical constant at
all, must begin with one, say I", whose scope is the whole
part minus I", This gives a mechanizable inductive defini
tion of the scope of every logical constant in any sequent.
A logical constant r is said to "govern" a logical con
stant I", if I" falls within the scope of r.

To avoid the explicit use of the prenex normal form,
i.e., the form in which all quantifiers in a formula stand
at its beginning, it is desirable to introduce, after Her
brand.t" the sign of every quantifier in a sequent. Two
simple preliminary operations will be performed on a
given sequent before calculating the signs of the quanti
fiers in it. First, distinct quantifiers are to get distinct
variables, even when one quantifier does not govern the
other; moreover, the free variables in the sequent are not
used as variables attached to explicit quantifiers. This
simplifies the elimination of quantifiers afterwards. Sec
ond, all occurrences of = which govern any quantifiers
at all are eliminated by either of two simple equiva
lences: 4>=1f! if and only if (<p&f)v(-<p&~if!), or,
alternatively, (- ep v1f!) & (- if! ep).

The positive and negative parts of any formula in the
sequent are defined thus: 0) (an occurrence of) ep is a
positive part of (the same occurrence of) ep; (ii) if ep
is a positive (a negative) part of .;;, then ep is a negative
(a positive) part of -1f!; (iii) if ep is a positive (a nega
tive) part of l' or of x. then ep is a positive (a negative)
part of IfvX; (iv) similarly with ep and t/J&X; (v) if <p
is a positive (a negative) part of >f, then rp is a positive
(a negative) part of (Ol)'!'; (vi) similarly with ep and
(E a) y; (vii) if 4> is a positive (a negative) part of 1f!,
then ep is a positive (a negative) part of X~ r/t, and a
negative (a positive) part of r/t :J X. Any formula r/> in a
sequent is a positive or negative part of the sequent ac
cording as (i) it is a positive (a negative) part of a
whole formula in the consequent (the antecedent), or
(ii) it is a negative (a positive) part of a whole formula

THM .TOTTRNAT.o.TANTTARV 1Q/

10

in the consequent (the antecedent), Any quantifier (It)

with the scope 1> in a given sequent is positive (nega
tive) in the sequent if and only if (0') 1> is a positive (a
negative) part of the sequent; (E a) is positive (nega
tive) if and only if (Ea) ¢ is a negative (a positive)
part of the sequent; the different occurrences of a same
free variable cr in the sequent also make up a positive
quantifier (as if (a) were put at the head of the whole
sequent).

This involved definition can be illustrated by an exam
ple:

Ex.O.(X) (OXY":J (-GXX & (EZ) HXZ»,
(W)«-GWW &(EU)HWU) :)GWY)
-r-(EV)HYV.

10 this example, (X) is a negative quantifier, (EZ) is
positive, (W) is negative, (EU) is negative, '(EV) is
positive. For instance, (EU)HWU is positive in ,~GWW
&(EU)HWU but negative in (- GWW&(EU)HWU)
:J GWY and (W)«- GWW&(EU)HWU):J GWy),
which is a whole formula in the antecedent. Hence,
(EU)HWU is positive in the sequent. Hence, (EU) is
negative. The assignment of signs to quantifiers coin
cides with the result in a prenex normal form; positive
for universal. negative for existential. Thus, one prenex
form of Ex. 0 is:

(Y) (EX) (EW) (EU) (Z) (V) {{(GXY:;
(~GXX&HXZ»
&{(- GWW &lfWU):J GWn] ~j - HYV}.

Another useful but involved concept is "rniniscopc'
forms of a formula of the predicate calculus. It is in a
sense the opposite of the prenex form, which generally
gives every quantifier the maximum scope. Since the in
terweaving of quantifiers and variables is the main factor
determining the complexity of a formula of the predicate
calculus, it is not hard to see that separating variables
and reducing the ranges of quantifiers may help to sim
plify the problem of determining whether a formula is a
theorem. The unfortunate part is that sometimes it can
be a very complicated process to get a formula into the
miniscope form,

It is easier to explain the notion for a formula in which
""'" and :::J no longer occur (say, eliminated by usual defi
nitions) so that the only truth-functional connectives
are -, &, v, Such a formula is said to be in the miniscope
form if and only if: (i) an atomic formula <P is in the
miniscope form; (ii) if 1> in (a)1> (or (E a)¢) is a dis
junction (a conjunction) of formulae, each of which is
in the miniscope form and either contains a or contains
no tree variable at all, then (a) 1> (or (E a) c/» is in the
miniscope form; (iii) if <p and >f; are in the miniscope
form, so are - cp, 1>v1f;, cp&rf:; (iv) if ¢ in (a)¢ (or
(Ea)<p) begins with (E/3) (or ([3) and is in the
miniscope form, so is (a) ¢ (or E a) 1»; (v) a formula
beginning with a string of quantifiers of the same kind
is in the miniscope form if every formula obtained by
permuting these quantifiers and then dropping the first,
is in the miniscope form. One procedure for bringing a

formula into the rniniscope form is explained in detail
by Quine,1~ In what follows, only parts of Quine's pro
cedure will be used and explained, the machine will fol
low quite different procedures if the formulae in a given
sequent are not easily brought into the miniscope form.

The system Qp and the AE predicate calculus

A specially simple decision procedure is available (or
many of those sequents not containing function symbols
in which each formula is in the miniscope form and in
the AE form, i.e., no positive quantifier is governed by a
negative quantifier, The procedure can be extended by
two preliminary steps and described as follows.

Step 1. Bring every formula into the miniscope form and
at the same time apply the truth-functional rules P2 - P6b,
whenever possible. In general, we obtain a finite set of
sequents which all arc theorems if and only if the orig
inal sequent is.

Step 2. Test each sequent and decide whether it is in the
AE form. If this is so for all the sequents, then they and
the original sequent all faJl within the AE predicate cal
culus, and we proceed to decide each sequent by continu
ing with Step 3. If this is not so for some sequent, then
the original sequent does not belong to the AE predicate
calculus and has to be treated by appealing to a richer
system Q to be described below.

Step 3. For a sequent in the AE predicate calculus, drop
all quantifiers and replace all the variables attached to
negative quantifiers by numerals, one numeral for each
quantifier. The resulting sequent contains no more quan
tifiers.

Step 4. Apply the truth-functional rules to obtain a finite
set of sequents which contain no more logical constants.
Test each sequent by the initial rules and retain only the
non-valid ones.

Step 5. List all the variables and numerals occurring in
this last set of sequents of atomic formulae, make all
possible substitutions of the variables for the numerals
in the sequents, (substitute X for the numerals if no
variables occur) and test each time whether the result
ing sequents are all valid. The initial sequent of Step 3
is a theorem if there is a substitution which makes all
the sequents in the finite set theorems.

Step 6. The original sequent is a theorem if all the se
quents obtained by Step 1 are theorems by Steps 3 to 5.

This completes the description of Qp. It is possible to
formulate this system more formally, as derived from the
basic system Pe, by adding additional explicit rules. But
the result would be rather lengthy and a bit artificial.
Since the above less explicit formulation conforms to the
general theoretical requirements of a formal system, we
shall not give a formally more pleasing description. This
remark applies also to the systems to be given below.

Here are a few simple examples which illustrate this
procedure and some minor modifications in it:

"10.25. (X)GX --"?(EY)GY (I)
(1) Gl--"?G2 NOT (2)
(I) GX--"?GX VA (2)

QED

*11.21.--"? (X)(Y)(Z)GXYZ (V)(U)(W)GUVW
(1)

(1) (X) (Y)(Z)GXYZ--"?(V)(U) (W)GUVW
(2)

(1) (V)(U)(W)GUVW --"?(X)(Y) (Z)GXYZ
(3)

(2) GI23--"?GUVW NOT (4)
(2) GUVW--"?GUVW VA (4)

PQED

(3) G213--"?GXYZ NOT (5)
(3) GXYZ--"?GXYZ VA (5)

QED

>I< 11.57 (X)GX SE (Y)(Z)(GY & GZ) (1)
(1) (X)GX -?(Y)(Z)(GY &GZ) (2)
(1) (y)(Z)(GY &GZ)--"?(X)GX (3)
(3) Gl &G2-?GX (4)
(4) Gl,G2-?GX NOT (5)
(4) GX,GX--"?GX VA (5)

PQED

(2) (X)GX -?(Y)GY &(Z)GZ (6)
(6) (X)GX -?(Y)GY (7)
(6) (X)GX-?(Z)GZ (8)
(7) Gl-?GY NOT (9)
(7) GY-?GY VA (9)

PQED

(8) Gl--"?GZ NOT (10)
(8) GZ-?GZ VA (10)

QED

*9.22. (X)(GX -:J HX)-?(EY)GY -:J (EZ)HZ
(1)

(1) (X)(GX -:J HX), (EY)GY -?(EZ)HZ (2)
(2) Gl-:JHl,GY-?H2 (3)
(3) HI, GY-?H2 NOT (4)
(3) GY -?H2,Gl NOT (5)
(3) GY--,?flY,GY VA (5)

QED.
(3) HY,GY -? HI' VA (4)

These examples are intended to show several things. In
the first place, for example, in line (5) of *11.21, the
possible substitutions for (1,2,3) are (X,X,X), (X,X,Y),
(X,X,Z) , (X,Y,X), (X,I',Y), (X,Y,Z), (Y,X,X,)
(Y,X,Y), (Y,X,Z) , (Y,Y,X), (Y,Y,Y), (Y,Y,Z), et
cetera, 27 in all. If one tries out the substitutions one by
one, as was done ill Program III, it will take some time
before one reaches the correct substitution (Y,X,Z). It
is, however, clear that an equally mechanizable proce
dure is to single out occurrences of the same predicate
letter on both sides of the arrow and select the substitu-

tions which would make all the sequents in question theo
rems. This is one minor change which will be made in
Program Ill. Incidentally, this is also an instance of a
simple strategy which improves the program.

In the second place, *9.22 shows that there is no need
to eliminate -:J because the definition of formulae in the
miniscope form can easily be modified to include formu
lae containing -:J in addition to -, v, &. All that is
needed is to remember that ep -:J ¥r is the same as .~ .p v 0/.

In the third place, as will be proved later on, the
Steps 3 to 5 given above are applicable to a sequent in
the AE form which contains at most one positive quan
tifier even if it is not in the miniscope form. This is why
in the proof of *11.57, (3) does not have to be trans
formed into the miniscope form, while (2) has to. Thus
if the quantifiers in (2) are not separated as in line (6),
one gets:

(2) Gl--,?GY&GZ (6)
(6) Gl-? GY NOT (7)
(6) Gl-? GZ NOT (8)

No possible substitution can make both (7) and (8)
theorems. Hence, although "11.57 is a theorem, no proof
would be obtained in this way, unless a reduction to the
miniscope form is made first. On the other hand, in an
alternative procedure to be described below, Step 5 in
the above procedure is replaced by a different substitu
tion, performed before Step 4, so that G1 is replaced by
G Y,GZ in the above example and it is no longer neces
sary to have the sequent in the miniscope form to begin
with. The relative merits of the two procedures will be
compared below.

• Program III: The AE predicate calculus

This program was originally intended to embody the
procedure Qp. But the preliminary part of bringing a
formula into the miniscope form has not been debugged.
It is now clear that just for the purpose of proving all the
theorems of the predicate calculus in Principia, it is not
necessary to include all the rules for bringing a formula
into a miniscope form. Indeed, only about 5% of the
theorems need such rules at all, and only rather simple
ones.

There are, however, a few other differences between
Program III and the procedure described above. Instead
of eliminating all quantifiers at once according to their
signs, quantifiers are treated on the same basis as the
truth-functional connectives with two rules for each. If
A and ~ are (possibly empty) strings of atomic formulae
and i is a new numeral, v is a new variable:

Rule --'?v: If/; -? A, ep v, '" then?: -? A, (a) ep a, rr.
Rule --'?3: If/; -? A, ep i, rr, then Z-? A, (E 0:) fj> (t, ".

Rule V -'lo: If A, ep i, p --'? 71', then A, (0:) ep a, r -?:T.

Rule 3.-?: If A, ep v, r -? 71', then A, (E 0:) ep a, p -? 71'

These rules make for uniformity in the whole procedure
except that precaution should be taken that the same
quantifier, when recurring at different places on account
of truth-functional reductions, should still be replaced by
the same variables or numerals, although when the re
placement is by a numeral, the difference is not vital. 11

IBM JOURNAL-JANUARY 1960

use Steps 4 and 5 of the preceding section.
A sample of the print-outs by Program III without the

modifications is given in Appendix IV. In this connec
tion, it may be of interest to report an amusing phenom
enon when Program III is in operation. The machine
usually prints out the lines of a proof in quick succes
sion, and then there is a long pause, as if it were thinking
hard, before it prints out the substitution instance which
makes all the nonvalid sequents of atomic formulae valid.
For example, the first 15 lines of *11.501 in Appendix
IV were printed out in quick succession, followed by a
long pause of over 2 minutes, and then the remaining
few lines were printed out.

• Systems Qq and Qr: Alternative formulations of the
A E predicate calculus

As remarked in connection with the proof of * l1.57,
one can replace Step 5 by a different way of substitution
and then the new method Qq becomes applicable even
when the formulae in the sequent are not in the mini
scope form, as Jong as the sequent is in the AE form.

More exactly, the new method of substitution is as
follows. Consider the sequent obtained immediately
after the elimination of quantifiers, and determine all the
occurring variables and numerals. If al, ..., 0'" are the
variables, a formula ep i, where i is a numeral, is replaced
by epal' ... , epan- For example, take (2) of '" 11.57:

(1)
(2)
(3)

VA (4)
VA (5)

(1)
(2)
(3)
(3)

(X)GX -7> (Y) (Z) (GY & GZ)
Gl-7>GY & GZ
GY, GZ -7> GY &GZ
GY,GZ-7>GY
GY, GZ-7>GZ
QED.

What are the comparative merits of Qp and Qq?
According to Qq, only one substitution is made, and at
the beginning rather than at the end, but unlike Qp,
the results obtained may be sequents longer than any
previous sequents in the proof. To apply Qq it is not
necessary that the formulae be first brought to the
miniscope form-the procedure is applicable as long as
the sequent is in the AE form. The method QP, how
ever, has the compensating advantage that sometimes a
sequent not in the AE form can be reduced to sequents
in this form by bringing it into the miniscope form. For
example, all sequents of the monadic predicate calculus
are decidable by Qp, but not by Qq. Church's examples?
in Appendix VI is such a case. On the other hand, the
same example also shows that the procedure of bringing
a sequent into the miniscope form can get very involved,
so that other methods become preferable. While both Qp
and Qq can be incorporated in the system Q for the
whole predicate calculus, to be described below, a third
method Qr is closer to Q in spirit. Hence, Q will be pre
sented as an extension of Qr rather than one of Qp or Qq.

The method Qr proceeds in the same way as Qp ex
cept that at the step of substitution, the disjunction of
all substitution instances is tested for truth-functional
validity. Thus, take (2) of *11.57 again:

When this precaution is not taken, it can happen that cer
tain theorems of the AE predicate calculus do not get
proofs. This in fact happened with Program III, which
failed to yield proofs for *10.3, "10.51, *10.55, ~·lO.56.

>1<11.37, *11.52, *11.521, *11.61, for no other reason
than this.

A less serious defect in Program III is that truth
functional reductions are not always made as often as
possible before eliminating quantifiers. This has the de
fect that several separate problems are sometimes treated
as one whole problem and the running time required for
getting a proof becomes unnecessarily long. In four spe
cial cases, viz., *10.22, *10.29, *10.42, *10,43, this de
fect in fact results in the failure to get a proof, even
though a proof for each can be found by Program lJI. if
all possible truth-functional reductions are made before
eliminating quantifiers. Both this and the preceding de
fects of Program III can easily be amended. The reason
for dwelling so long on them is to illustrate how machines
can assist mathematical research in revealing theoretical
defects in preliminary formulations of general proce
dures.

Since the present methods do not use axioms and defi
nitions, the axioms and definitions of Principia are re
written as theorems. The resulting augmented list of
theorems in Principia (*9 to *13) from the predicate
calculus with equality, has a total number of 158 mem
bers. Of these, 139 can be proved by Program III as it
stands, although some of them require unnecessarily long
running time, e.g., *11.21 and *11.24. If we make the
few minor modifications mentioned above, the running
time for all becomes reasonably short and the 12 theo
rems listed in the last two paragraphs become provable.
Altogether there are only 7 of the 158 theorems which
stand in need of some preliminary simple steps to get the
formulae into the miniscope form: *11.31, *11.391,
*llAl, *11.57, *11.59, '" 11.7, *11.71. The rules needed
to take care of these cases are three:

(i) Replace (aHq:, a & Ij;a) by (a) q:, a & «(t) .;, a.

(ii) Replace (Ea)(q:,ava) by (Ea)q:,av(Ea)'frit.

(iii) Replace (a)(xa:J (epa&ifuJI.» by
(a)(xa:J epa)&(a)(xa:J 'fa).

Hence, to summarize, Program III can be somewhat
modified to prove all the 158 theorems of Principia, with
the modified program doing the following. Given a se
quent, see whether the rules 0), (ii) ,(iii) are applicable
and apply them if so. Then make all truth-functional
simplifications by the rules P2 - P6b. This in general
yields a finite set of sequents, If everyone is in the AE
form and either contains no more than one positive
quantifier or is in the miniscope form, then the original
sequent is often decidable by the method; otherwise it is
beyond the capacity of the method. If the former is the
case, proceed to decide each sequent either by elim
inating all quantifiers at once, as in Step 3 of the pre
ceding section, or by mixing the application of the rules
P2-P6b with the rules -7>¥, -7>3, ¥-7>, 3-7>. Finally,12

IBM JOURNAL'JANUARY 1960

Now we test whether the disjunction of the conjunc
tion of GY~GY and GY~GZ, and that of GZ~
GY and GZ~ GZ, is truth-functionally valid. This is
indeed so, because if the first disjunctant is false, then
GY~ GZ is false and then GZ~ GY is true and there
with the second disjunctant is true. Alternatively, this
disjunction can also be expressed as a conjunction of
four clauses:

(i) GY, GZ~GY, GY
(ii) GY, GZ~ GY, GZ

(iii) G Y, GZ~ GZ, GY
(iv) GY, GZ~ GZ, oz.

Now we have three alternative methods, Qp, Qq, Qr
for the AE predicate calculus. In Appendix V, we give
an example with its three disproofs.

How do we justify the methods Qp, Qq, and Qr'! First,
if there is no proof, then the original sequent is not valid.
The proof for this is easiest for Qq. In the example in
Appendix V, line (3) under method Qq is not valid if
and only if the original sequent (1) is not valid in the
domain {X,Z}. The fact that (4), (5), (6), (7) are not
all valid shows that (3) is not valid. In fact, if GXX and
GXZ arc true but GZX and GZZ are false, (3) is not
valid. Therefore, (1) is false under the particular inter
pretation and hence not valid. More exactly, we wish to
find an interpretation under which (EX) (Y) (GXY v G
YX) & - (Z) (EW)GZW, or more simply, (Y) (GXY
v GYX) & (W) - GZW, is satisfiable in {X, Z}. That
is to say, to find an interpretation under which the con
junction of GXXvGXX, GXZvGZX, - GZX, '-' GZZ
is true, or its negation (3) is false. The interpretation of
G given above serves this purpose. It is not hard to gen
eralize the argument to all sequents in the AE form. In
deed, such considerations are familiar from standard de
cision procedures.P-

The justification of Qp consists in the fact that if an
AE sequent is in the miniscope form, then all the nega
tive quantifiers essentially govern a disjunction in the
consequent and a conjunction in the antecedent. As a
result, the substitution at the end is often equivalent to
that obtained by the method Qq. For example, in Ap
pendix V, the disjunction under method Qp is of:

(i) GXX -,;>CZX;GXX~GZX or simply
GXXvGXX~GZX

(ii) GXX -';> GZZ; GXX~ GZZ or simply
GXXvGXX~GZZ

(iii) GXZ -';> GZX; GZX~ GZX or simply
GXZ v GZX -';> GZX

(iv) CXZ -';> GZX; GZX~ GZZ or simply
GXZ v GZX -';> GZZ

Hence, the disjunction is equivalent to:

'-' (GXX v CXX) v - (GXZ v GZX) v GZX v GZZ,

which, in turn, is equivalent to (3) under method Qq.

(1)
(2)
(2)

(X)GX ~(Y) (Z)(GY &GX)
Gl~CY&GZ

Cl~GY

Gl~GZ.

(1)
(2)
(3)
(4)

When a sequent has no more than one positive quanti
fier, whether in the miniscope form or not, it is quite
obvious that a proof by Qq is obtainable if and only if
one by Qp is, since in either method there is only a single
possible substitution. In the general case, however, as
Mr. Richard Goldberg t has pointed out in correspond
ence, there are AE sequents in the miniscope form which
are provable by Qq but not by Qp. He gives the follow
ing valid sequent as example:

(X)GXU ~(EW) (GYW &GZW).

It follows that Qp is applicable only to a subclass of AE
sequents in the miniscope form. Hence, it would seem
that the correct course is to modify Program III to em
body the procedure Qq or the procedure Qr. The modi
fications needed are, fortunately, again not extensive.

With some care, it is possible to prove by an inductive
argument that a proof by Qq is obtainable if and only if
one by Qr is. This is so because the substitutions at the
beginning of Qq give the same result as the taking of
disjunctions at the end of Qr. Hence, it is true that all
valid sequents of the A E predicate calculus are provable
in Qq and in Qr.

It is easier to prove that if there is a proof by any of
the methods, then the sequent is valid. In the case of Qp,
one can simply replace all numerals throughout by the
correct variables found at the end, and the result would
be a quite ordinary proof which can easily be seen to
yield only valid results. In the case of Qq, one can again
make the replacement throughout, so that the result is a
proof which, instead of ~V, ~3, V~, 3~, uses ~ y,
E~, and:

Rule -';>3*: If';; -,;>'\,1> O'j, ... ,1' a" 7(',

then (;~ A, (E 0') 1> 0',71".

Rule V -,;>*: If ,\, l' (1'1' ••• , l' an' P -';> zr,

then '\, (a) l' a, p~ 70.

Finally, since there is a proof by Qr if and only if there
is one by Qq, every theorem of Qr is also valid.

• System Q: The whole predicate calculus with equality

Thus far we have considered only AE sequents and have
used no function symbols. Now we shall consider arbi
trary sequents of the predicate calculus and make use of
function symbols from time to time.

The method Q, an extension of Qr, can be explained
as follows. It is desirable (for shorter running time)
but not necessary, to make preliminary truth-functional
reductions so that one problem is broken up into several
simpler problems. For each problem, the following steps
are used.

Step 1. Eliminate all occurrences of = whose scopes con
tain quantifiers. Determine the positive quantifiers, the
negative quantifiers, and for every positive quantifier
governed by negative quantifiers, if there is any, the nega
tive quantifiers which govern it. Use distinct variables
for all the free variables and positive quantifiers.

t IBM Research Laboratory. Yorktown Heights, N. ·Y. 13

IBM JOURNAL'JANUARY 1960

Step II. Drop all quantifiers and replace all variables at
tached to a negative quantifier by a distinct numeral, all
variables attached to a positive quantifier governed by
negative quantifiers by a function symbol, followed by
the numerals for the governing negative quantifiers.

Step III. Make truth-functional simplifications until all
logical constants are eliminated and a finite set of se
quents of atomic formulae is obtained.

In this example, the basic terms are X, [X, gX, jgX, gjX,
j2X, g2X, j g2X, gj2X, pgX gZjX, j3X, g3X, et cetera.
Intuitively it can be seen that, no matter what basic terms
we substitute for 1 and 2, we can never arrive at a
tautologous disjunction. Thus, no matter what we do,
we can never get an antecedent of the form GOlgfJ, or a
consequent of the form Gajf3. Hence, this is not a
theorem of Q.

An alternative procedure Q', which is more directly
related to the standard method initiated by Herbrand, is
to make the substitutions immediately after the quanti
fiers are eliminated. In Appendix VI, a proof of Ex. 3 is
given by this method. Clearly Q' is an extension of Qq,
just as Q is an extension of Qr. While it is not clear
whether Q or Q' is superior if the problem is done by

hand, it is conjectured that Q is mechanically less cum
bersome, especially if the final test procedure is pro
grammed along the line suggested in Appendix VII.

To justify the procedures Q and Q', that is, to prove
their correctness and completeness, one need introduce
only slight modifications into standard arguments of
Skolem and Herbrand. The equivalence of the two pro
cedures is established by the same kind of argument as
that for the equivalence of Qq and Qr. Hence, it suf
fices to prove the correctness and completeness of Q'.

The correctness, i.e., that every provable sequent is
valid, is apparent. Given a proof of Q', i.e., a disjunc
tion of substitution instances which is tautologous, we
can derive a sequent which is equivalent to the original
sequent to be proved, except that every whole formula
in the sequent is in the prenex form. Take Ex. 1. The
proof of Q' consists merely in replacing the lines (3)-(6)
in the above proof by the tautologous line:
-) GXjX :J GXX, GXPX:J GXfX. (i)
From this line, we can by the usual rules of quantifica
tion infer:
-:;. GXjX:J GXX, (Z) (GXZ :J GXjX)
-:;. GXjX:J GXX, (EY) (Z) (GXZ:J GXY)
-:;.(Z)(GXZ:J GXX), (EY)(Z)(GXZ:J GXY)
-:;.(EY)(Z) (GXZ:J GXX), (EY)(Z)GXZ:J GXY)
-:;.(EY)(Z)(GXZ:J GXX).
It may be remarked that since a new term for the uni
versal quantifier is introduced every time, viz., jX, j2X,
et cetera, we can always reintroduce it successively
without violating the restriction that the term to be re
placed by Z is not free elsewhere. Strictly speaking, the
terms IX, j2X, et cetera should first be replaced by new
variables, say U, V, et cetera. Then the line (i) remains
valid truth-functionally, and the resulting proof of the
original sequent of Ex. 1 would conform entirely to
usual rules for quantiflers.P

The completeness of Q' can be proved by using ideas
familiar in mathematical logic. 24 We wish to prove that
if there is no proof, then its negation is satisfiable in an
enumerable domain, and hence the original sequent is
not valid. Consider Ex. 2 for which none of Sl' SlvS2'
SlVS2VSS' et cetera, is valid. In other words, for each dis
junction, there are truth-value assignments which would
make it false. Since every later disjunction contains all
earlier disjunctions as part, a falsifying assignment of
Slv", vS" (call it D,,) also falsifies all D.. i < n. In other
words, there is a truth-assignment which falsifies D l ,

and for every n, there exists a falsifying assignment for
D" which has an extension that falsifies D,,+l' In the
simple example Ex. 2, we have:
D l is falsified if GXfX is true but GXgX is false,
D 2 is falsified if, in addition, GjXj2X is true,
D 3 is falsified if, in addition, GfXgX is false,
D 4 is falsified if, in addition, GjXj2X is true,
and so on.

In general, we have an infinite tree structure such that
there is a finite set of nodes falsifying D 1, of which at
least one has extensions or nodes on the second level,
which falsify D 2• Among the nodes on the second level,

(1)
(2)
(3)
(4)
(5)
(6)

Ex. 2
(1)

Step IV. Make all possible substitutions on these se
quents obtaining results Sl' Sz, Ss, et cetera. The original
sequent is a theorem if and only if there is a truth
functional tautology among Sl' SlvSZ, SlVS2vSS' et cetera.

The substitutions to be made are a bit more complex
than those in the AE predicate calculus. The basic terms
consist of not only all the occurring variables, say X and
Y, but also instances of the composite terms such as, say,
IX, ffX or j2X, IY, pY, j3X, f3Y, 14X , et cetera. The
numerals are to be substituted by all possible selections
from these basic terms. If no variables occur in the se
quents, a single variable X is added.

We give a few simple examples. More complex exam
ples are included in Appendices VI and VII.22

Ex. 1. -)(EY)(Z)(GXZ:J GXY)
(1) -:;.GXll:J GXl
(2) GXjl-:;. GXl
(2) GXjX -:;. GXX
(2) GXj2X -:;. GXjX
(2) GXj3X -:;. GXj2X

and so on.

Since the disjunction of (4) and (5) is already valid,
this is a theorem. In this simple case, (4), (5), (6) are
Sl' S2, S3' and Sl' SlVS2' SlVSZVSS can be simply rewritten
as Sl and:

GXjX, GXpX -:;. GXX, GXjX
GXIX, GXj2X, GXj3X -:;. GXX, GXjX, GXj2X.

(X) (EY)(GXY -:;. (EZ)(W)GZW (1)
Gljl-:;. G2g2 (2)
GXjX -) GXgX (Sl)
GjXj2X -:;. GXgX (Sz)
GXjX -:;. GjXgjX (Ss)
GjXj2X -:;. GjXgjX (S4)
and so on.

14

IBM ,JOURNAL",JAKUARY 1960

Le., truth-value assignments which falsify D 2• at least
one has extensions which falsify D~h and so on. It then
follows by the Unendlichkeltslenunasv that there exists
an infinite path, or an infinite truth-value assignment
which falsifies Dr. Dz, ' " simultaneously. Thus, since
each node originates only finitely many (possibly zero)
immediate branches and there arc infinitely many paths,
there must be one node a I at the first level which occurs
in infinitely many paths, and among the finitely many
nodes of the second level joined to lll' there must be at
least one node a2 which occurs in infinitely many paths.
This is true for every level, and hence al. G2' aa ... deter
mines an infinite path. This is no longer true generally
when there may be infinitely many branches for a given
node. For example, there is no infinite path in a "spread"
in which there is one node of the first level (the origin)
and a path from it of length 11, for every n, all disjoint
except for the origin.

An assignment which falsifies D]> D~,··· simultane
ously is a model of the negation of, say, Ex. 2:

(X)(EY)GXY&~ (EZ) (W)GZW,
or (X)[(EY)GXY & (EW) ~ GXW). (N)
Thus the individuals arc X, IX, gX, j2X, ~PX. rgX, et
cetera, and we have found an interpretation of G such
that for every individual a, there is an individual b, viz.
fa, and an individual c, viz. ga, such that Gaia & ~
Gaga. Hence, in this domain with this G, the negation
N of Ex. 2 is true, and Ex. 2 is not valid.

A program for the method Q or the method QJ has
not yet been written. It seems clear that certain auxiliary
procedures will be useful in reducing the running time
and extending the range of application. For example, it
seems desirable to separate scopes of different quantifiers
when possible, although it is not immediately obvious
whether always bringing a sequent into the miniscope
form first is feasible on the whole. Other simplifications
such as dropping tautologous or repetitive conjunctants
could easily and profitably be included. In general, the
practical limitation of the machine will necessarily im
pose certain restrictions on the solvable problems. The
machine will have to concede defeat when the running
time is too long or the easily available storage is ex
hausted. When such a situation arises, it seems desirable
to try some alternative procedure before giving up the
problem entirely.

An intrinsic limitation of the methods Q and QJ is the
following. There are various sequents which amount to
an axiom of infinity, i.e., a proposition satisfiable in an
infinite domain but in no finite domain. If the machine
is given the negation of such a sequent, the method Q or
the method QJ will never give the desired negative
answer since it is, being the negation of an axiom of in
finity, valid in every finite domain, though not a theorem
of the predicate calculus. Simple examples of this type
are:
Ex. 6.~ (EX) GXX, (EX) (Y)- GXY,

(EX) (EY) (£Z) (GX Y & GYZ & ~ GXZ)
Ex. 7.~(EX)GXX, (EX){Y) - GXY,

(EX)(Y)(l:.'Z)(GYZ&~GXZ).

This class of propositions may be of special interest if
we wish to test whether a formal system is consistent.
Most of the interesting formal systems are intended to be
satisfiable only in infinite domains. Hence, if the system
is consistent, then its negation, though not a theorem of
the predicate calculus, is valid in every finite domain.
Hence, even theoretically, the methods Q and QJ can at
most discover contradictions in an inconsistent formal
system but cannot ascertain that an interesting formal
system is indeed consistent.

This suggests the desirability of adding special deci
sion procedures which cover some propositions in this
class. Such results are rather scarce. The only one seems
to be Ackermann's, which is applicable only to a rather
special subclass.w

A question concerning the efficiency of the methods
Q and Q' is the obvious remark that if some of D 1 , D 2 ,

... is indeed a tautology, the human being often finds
such a disjunction in the sequence without actually
examining all the preceding disjunctions. Hence, it may
be possible to include suitable strategies for choosing
such disjunctions. The difficult problem here is to find
suitable strategies of sufficient generality. This is in part
related to the larger questions of making use of previ
ously proved theorems. The methods considered in this
paper so far all begin from scratch. When we get into
more advanced disciplines, it seems unlikely that the ma
chine can feasibly avoid reference to previously proved
theorems. Yet there is the analogous situation in ordi
nary calculations where it is often faster for the machine
to calculate known results on the spot rather than look
them up in tables stored in some remote corner of the
machine. On account of questions of storage and access
time, some golden mean has to be struck between the
knowledgeable pedant and the prodigy who turns out
to be somewhat ignorant.

Conclusions

The original aim of the writer was to take mathematical
textbooks such as Landau on the number system,:n
Hardy-Wright on number theory,~8 Hardy on the calcu
lus,:m Veblen-Young on projective geometry.s? the vol
umes by Bourbaki, as outlines and to make the machine
formalize all the proofs (fill in the gaps), The purpose
of this paper is to report work done recently on the
underlying logic, as a preliminary to that project.

The restricted objective has been met by a running
program for the propositional calculus and a consider
able portion of the predicate calculus. Methods for deal
ing with the whole predicate calculus by machine have
been described fairly exactly. A summary of results and
a comparison with previous work in this field were given
in the introductory section and will not be repeated
here.

The writer sees the main interest of the work reported
here, not so much in getting a few specific results which
in some ways are stronger than expected (e.g., the fast
speed attained and the relatively small storage needed),
as in illustrating the great potentiality of machines in an 15

IBM JOURNAL 'JANUARY 1960

16

apparently wide area of research and development. Vari
ous problems of the same type come to mind.

Decision procedures for the intuitionistic and modal
propositional calculi are available but often too lengthy
to be done by hand.3 l It seems possible and desirable to
code these procedures in a manner similar to the classi
cal systems of logic, The iatuitionistic predicate calculus
with its decidable subdomains, such as all those proposi
tions which are in the prenex form, may also be suscepti
ble to analogous treatment. Since the efficiency of the
proof-decision procedure in Program I depends on the
elimination of modus ponens (rule of detachment), a
related question of logic is to devise cut-free systems for
various partial and alternative systems of the proposi
tional calculus.

A good deal of work has been spent in constructing
various systems of the propositional calculus and of
modal logic. The questions of completeness and inde
pendence are often settled by methods which are largely
mechanizable and even of no great complexity. This sug
gests that many of the results in this area, such as those
reported by Prior':~2 can be obtained by mechanical
means. Given a system, in order to determine the inde
pendence and completeness (i.e., nonindependence of all
axioms of some given complete system) of its axioms,
we may simultaneously grind out proofs and matrices
used for independence proofs and stop when we have
either obtained a derivation or a matrix that establishes
the independence of the formula under consideration. It
is true that Linial and Post 33 have proved the undecida
bility of this class of problems so that we cannot be sure
that we can always settle the particular question in each
case. Nonetheless, we may expect this procedure to work
in a large number of cases. The only practical difficulty
is that, in grinding out proofs, the rules of modus ponens
makes the matter rather unwieldy. When equivalent cut
free formulations are available, this mechanical aid to
such simple mathematical research would become more
feasible. Alternatively, the strategies devised by Newell
Shaw-Simon may find here a less wasteful place of appli
cation.

A mathematically more interesting project is to have
machines develop some easy number theory. Here there
are two possible alternative approaches: use quantifiers
or avoid quantifiers. It is known in mathematical logic
that ordinary number theory can be developed largely
without appeal to quantifiers. Thus, from the discussions
in the body of the paper, it is clear that quantifiers serve
essentially to replace an indeterminate class of function
symbols. In number theory, these function symbols can
usually be replaced by specific function symbols intro
duced by recursive definitions. Since these are more spe
cific and often intuitively more familiar, it seems quite
plausible that avoiding quantifiers would be an advantage.
On the other hand, it may be better to use existential
quantifiers but avoid mixing quantifiers of both kinds
("all" and "some"), since that is the main source of the
complexity of the predicate calculus.

If one wishes to prove tbat the square root of 2 is not

a rational number, this can be stated in the free-variable
form as: 2P#X2 , and a proof can be written out with
out use of quantifiers. On the other hand, if one wishes
to prove that there are infinitely many primes, it seems
natural to state the theorem as:
(EX)(Y < X&X is a prime).
Essentially, the usual proof gives us a simple recursive
function j, such that
Y < /Y &/Y is a prime
is true. But before we get the proof and the required
function, it is convenient to use the quantifier (EX)
which serves to express the problem that a yet unknown
function is being sought for.

In this connection, it may be of interest to make a few
general remarks on the nature of expansive features in
different proof procedures. The attractive feature of the
system P as a proof procedure is that. given a sequent,
all the lines in a proof for it are essentially parts of the
sequent. As a result, the task of searching for a proof is
restricted in advance so that, at least in theory, we can
always decide whether a proof exists or not. This con
trastssharply with those proof procedures for the propo
sitional calculus which make use of the modus ponens.
There, given q, we wish to search for p, such that p and
p ::Jq are theorems. There is no restriction on the length
and complexity of p, The cut-free formulation achieves
a method such that for every proof by the expansive
method there is a corresponding proof in this method
without expansion, and vice versa.

Since there is no decision procedure for the predicate
calculus or current number theory, it follows that ex
pansive features cannot be eliminated entirely from
these disciplines. The cut-free formulation for the predi
cate calculus concentrates the expansive feature in one
type of situation: viz., a conclusion (EX)FX may come
from Fl or F2 or et cetera. The method Q given above
further throws together all such expansions for a given
sequent to be proved or disproved at the end of the
process. These devices have the advantage that, for more
efficient partial methods or strategies, one may direct the
search mainly to one specific region which contains the
chief source of expansion.

If number theory is developed with no appeal to quan
tifiers, the above type of expansion is avoided. It is not
possible, however, to avoid in general another type of
expansion. Thus we can conclude X=Y from jX=/Y.
but given X and Y, there are in general infinitely many
candidates for the function i, so that trying to find an j
which leads to X= Y through jX=jY is an expansive
procedure. So much for different expansive features.

Other possibilities are set theory and the theory of
functions. In these cases, it seems desirable to use a
many-sorted predicate calculus 34 as the underlying logic.
While this is in theory not necessary, it will presumably
make for higher efficiency.

As is well known, all standard formal systems can be
formulated within the framework of the predicate cal
culus. In general, if a theorem p is derived from the
axioms AI"'" An' then the sequent A 1"'" An -i> P is

IBM .JOURNAL'JANUARY 1960

a theorem ot the predicate calculus. In particular, it a
system with finitely many axioms is inconsistent, the
negation of the conjunction of all its axioms is a theorem
of the predicate calculus. (The restriction on finitely
many axioms is, incidentally, not essential since in most
cases we can reformulate a formal system to use only
finitely many axioms, with substantially the same theo
rems.) Specker has proved 35 that Quine's New Founda
tions plus the axiom of choice is inconsistent. Hence, the
negation of the conjunction of these (finitely many)
axioms is a theorem of the predicate calculus. If a suf
ficiently efficient program for the predicate calculus on
a sufficiently large machine yields, unaided, a proof of
this, we would be encouraged to try to see whether the
system without the axiom of choice might also be incon
sistent. If a system is indeed inconsistent, then there
would be a chance that a proof of this fact can be
achieved first by a machine.

So far little is said about specific strategies. In number
theory, we arc often faced with the problem of choosing
a formula to make induction on. Here an obvious strat
egy would be to try first to use as the induction formula
the whole conclusion, and then the various sub formulae
of the conclusion to be established. When faced with a
conclusion (EX)FX, it seems usually advantageous to
try terms occurring elsewhere in the known part of the
proof, or their variants, in order to find a such that Fa.
Polya's book 36 contains various suggestions on strate
gies for developing number theory which will presuma
bly be useful when one gets deeper into the project of
mechanizing number theory. Efficient auxiliary proce
dures such as the one already mentioned by Dunham
Fridshal-Sward for the propositional calculus will un
doubtedly be of USe in shortening running time, when
one tries to formalize proofs or prove theorems in more
advanced domains.

While formalizing known or conjectured proofs and
proving new theorems are intimately related, it is reason
able to suppose that the first type of problem is much
easier for the machine. That is why the writer believes
that machines may become of practical use more quickly
for mathematical research, not by proving new theorems,
but by formalizing and checking outlines of proofs. This
proof formalization could be developed, say, from text
books to detailed formulations more rigorous than
Principia, from technical papers to textbooks, or from
abstracts to technical papers.

The selection of interesting conjectures or theorems
and useful definitions is less easily mechanizable. For
example, Program II described above gives only very
crude results. It should be of interest to try to get better
results along the same line. In more advanced domains,
however, the question seems to have a complexity of a
different order.

If we use a machine to grind out a large mass of
proofs, then there seems to be some mechanical test as to
the importance and centrality of concepts and theorems.
If a same theorem or a same expression occurs fre
quently, then we may wish to consider the theorem in-

teresting or introduce a definition for the expression.
This is, however, a rather slippery criterion. The finite
number of proofs printed out at a given time may form
a class that is determined on the ground of some formal
characteristic of an accidental nature. Unless there is
some acceptable norm in advance for ordering the proofs
to be obtained, one can hardly justify in this way the
claim that certain theorems are interesting.

A more stable criterion may be this: A formula which
is short but can be proved only by long proofs is a
"deep" theorem. A short expression which is equivalent
only to very long expressions is a "rich" concept.

In the normal situations, of course, we have less re
stricted objective guidance. There is a fixed body of con
cepts and theorems which is for good reasons regarded
as of special interest (the "archive of mathematical
knowledge built up by the cumulative effort of the hu
man intellect"). For such a body it is theoretically pos
sible to select important theorems and concepts me
chanically, as well as to find elegant alternative proofs.
However, even in this case, one is looking backwards. It
is not easy to find a forward-looking mechanizable cri
terion for mathematical centrality. For example, the nice
criterion of ranges of application is hard to render articu
late.

In one special kind of mathematics, one discipline is
developed from another. For example, theories of nat
ural numbers and real numbers can be developed from
set theory. If theorems are generated mechanically from
set theory, then any set of theorems isomorphic with the
axioms for real numbers (or natural numbers) deter
mines expressions which may be taken as definitions for
the basic concepts of the theory of real numbers (or
natural numbers). In such a case, one can claim that ma
chines can discover definitions too.

It has often been remarked that the machine can do
only what it is told. While this is true, one might be mis
led by an ambiguity. Thus the machine can be told to
make a calculation, find a proof, or choose a "deep"
theorem, et cetera. The main problem of using rather
than building machines is undoubtedly to express more
things in mechanical terms.

The limitation of machines has been seen as revealed
by its inability to write love letters. That depends on the
quality of the love letters to be composed. If one takes
the common sort of love letter taught in manuals of ef
fective letter-writing, the machine can certainly write
some useful love letters more quickly than it can prove
an interesting theorem. If the image of Don Juan in
some films is to be believed, the machine can surely be
taught to repeat the few sentences of flattery to every
woman.

If experimenting with a machine to see what it can do
is compared with the usual type of scientific research, it
seems more like engineering than physics, in so far as
we are not dealing with natural objects but man-made
gadgets, and we are applying rather than discovering
theories. On the other hand, calculating machines are
rather unique among man-made things in that their po- 17

IBM JOl:RNAL" JANUARY 1960

tentialities are far less clear to the maker than are other
gadgets. In trying to determine what a machine can do,
we are faced with almost the same kind of problem as in
animal or human psychology. Or, to quote Dunham, we
are almost trying to find out what a machine is.

The suspiciously aggressive term "mechanical mathe
matics" is not unattractive to a mathematical logician.
A common complaint among mathematicians is that
logicians, when engaged in formalization, are largely
concerned with pointless hairsplitting. It is sufficient to
know that proofs can be formalized. Why should one
take all the trouble to show exactly how such formaliza
tions are to be done, or even to carry out actual formali
zations? Logicians are often hard put to give a very con
vincing justification of their occupation and preoccupa
tion. One lame excuse which can be offered is that they
are of such a temperament as to wish to tabulate all
scores of all baseball players just to have a complete
record in the archives. However, the machines seem to
supply, more or less after the event, one good reason for
formalization. While many mathematicians have never
learned the predicate calculus, it seems hardly possible

for the machine to do much mathematics without first
dealing with the underlying logic in some explicit man
ner. While the human being gets bored and confused
with too much rigour and rigidity, the machine requires
entirely explicit instructions.

It seems as though logicians had worked with the fic
tion of man as a persistent and unimaginative beast who
can only follow rules blindly, and then the fiction found
its incarnation in the machine. Hence, the striving for in
human exactness is not pointless, senseless, but gets di
rection and justification. One may even claim that a new
life is given to the Hilbert program of the Entscheidungs
problem which von Neumann thought was thoroughly
shattered by Godel's discoveries. Although a universal
decision procedure for all mathematical problems is not
possible, formalization does seem to promise that ma
chines will do a major portion of the work that takes up
the time of research mathematicians today.

Note added in proof: Recently the writer has succeeded by improved
methods to have the machine prove the 158 theorems of '9 to '13 in
Principia in about four minutes. This line includes the time needed for
writing tapes but uses the off-line printer. The output is about 47 pages
of 60 lines each. (November 10, 1959)

QED

5*24/~BFDCPQ•. CFP.FQ •.. DCP .FQ .. CQ.FP 1
QED

7. PRELIMINARY TO PREDICATE CALCULUS 1
7*1/IG2.H2,GX,KX-CH3.K3 1
1/H2, GX,KX-CH3 .K3 2
21H2, GX, KX-H3 3

NOT VALID 3
2/H2, GX, KX-K3 4

NOT VALID 4
1/GX, KX--CH3 .K3, G2 5
5/GX,KX-H3, G2 6

NOT VALID 6
5/GX,KX-K3,G2 7

NOT VALlO 7
NOT VALID

Appendix I: A sample from print-outs by Program 1

2 *45/FDPQ-FP 1
lj-FP,DPQ 2
2/P-DPQ 3
3/P-P,Q 4

VALID 4
QED

5*21 /-JCFP. FQ .. BPQ 1
IjCFP.FQ-BPQ 2
2/FP, FQ-BPQ 3
3/FQ-BPQ,P 4
4/-BPQ,P,Q 5
5/P-Q,P,Q 6

VALID 6
5/Q-P,P, Q 7

VALID 7
QED

2*31jDP .DQR-DPQ,R 1
IjP-DPQ,R 2
2jP-P,Q,R 3

VALID 3
1jDQR-DPQ, R 4
4IQ-DPQ,R 5
5/Q-P,Q,R 6

VALID 6
4IR~DPQ,R 7
7/R-P, Q,R 8

VALID 8
18 QED

IBM JOURNAL , JANUARY 1960

4'~45 I-BP ,. CP. DPQ
l/P--CP.DPQ
2/P--P

VALlO
2/P-DPQ
4/P-P,Q

VALID
1/CP.DPQ-P
6I P,DPQ-P
7/P,P-P

VALID
7/P, Q-P

VALlO

5~22!-BFBPQ•.• DCP .FQ .• CQ.FP

5*23/-BBPQ .• •DCPQ .. CFP •FQ

QED

QED

1
2
3
3
4
5
5
6
7
S
8
9
9

1

1

Appendix II. Sample from print-outs by Program II

I-BDPR. R, CDPQ • P
/CCPQ .R-BIPR.P
jCCPQ .P-HIPR.R
jCBPQ.Q-CBPP.Q
jCCPP. Q-C'IPP •Q
jCCPP. R-CIPP. P
jCDPP. R-CDPP •P
/ BBPP •P-DCPQ •P
/ DCPQ •P-BHPP . P
jBIPP. P-DDPP.P
jDDPP .P-BIPP.P
IC/PR. P-BDPQ. P
IBIPQ •P-CDPR • P
jCCPR. R-BIPQ. Q
/CCPR. Q-BIPQ. R
/CCPR .P-BBPR. P
ICBPR. P-BCPR. P
jCIPQ. P-BDPR. P
IBIPR •P-CDPQ. P
ICCPQ .R-BIPR.Q
/CCPQ. Q-BIPR. R
ICCPQ.P-CBPP.P
ICBPQ.P-CCPP.P
ICDPP. P-CIPP. P
ICIPP.P~CDPP.P

/ BBPP • R-DBE'Q • R
jBCPP. Q-DBPQ •P
j-BDPP. R, DDPP •R
JBIPP.P-DDPP.Q
!BIPP. R-DCPP. R
/ BBPQ • P-DCPP • Q

/BBPQ •Q-DCPP . P
l DCPP. P-BBPQ. Q
I-BDPQ. P, CIPR. Q
IB/PQ. P-CDPR. Q
ICDPR •P-BIPQ. Q
jCCPR.Q-BBPR.P
jCBPR.R-BBPR.R
jCBPR.Q-BCPR.P
I-BCPR. R, CIPQ. R
ICIPQ. P-BDPR. Q
ICDPQ.R-BDPR.R
/CCPQ. R-BIPR.R
jCCPQ.Q-CBPP.P
/CCPQ.P-CBPP.Q
/CBPQ. R-CBPP.R
/CBPQ.Q-CCPP.P
JCCPP.Q-CBPQ.P
jCBPQ.P-CCPP.Q
jCCPP. R-ClPP. R
jCDPP. Q-ClPP. P
jBBPP. Q-DCPQ. Q
JDCPQ.Q-BBPP.Q
JBCPP •Q-DBPQ . Q
jBIPP •P-DDPf> • R
jBIPP •Q-DDPP. Q
/ BOPQ. Q-DCPP. Q
jCIPR •Q-BDPQ. Q
/CIPR • P-BDPQ. R
ICDPR. Q-81PQ. Q
ICCPR •R-l1BPR • P
/CCPR. Q-BBPR. Q

/CCPR. P-BBPR. R
jCBPR. R-BCPR. P
ICBPR.P-BCPR. R
I-BDPR • P, ClPQ. R
j BIPR . P-CDPQ • R
jCDPQ.P-BlPR .R
jCCPQ.R-CBPP.P
jCCPQ.Q-CBPP.Q
ICCPP. Q-CBPQ. Q
jCBPQ.Q-CCPP.Q
jCDPP. Q-CIPP. Q
JCDPP. R-CIPP •P
/ BBPP • P-DDPQ. P
/BCPP.Q-DBPQ.R
/ BBPQ. Q-DCPP. R
I-BCPQ. P, DCPP. P
jCCPR. Q-BBPR. R
jCCPR .P-BCPR. P
jCBPR • Q-BCPR •R
jCBPR. P-BDPR. P
JCBPP.P-CDPQ.P
jCDPQ.P-CBPP.P
jCCPQ.R-CBPP,Q
jCCPQ.P-CCPP.P
fCBPQ. P-CDPP. P
/ BBPP • P-DDPQ • Q
/ BBPP • Q-DDPQ •Q
jBBPP •R-DCPQ . R
jBDPP . Q-DBPQ . P
/BIPP •R-DDPP • R
/ BBPQ. 1'-DDP1'. Q

! BBPQ •Q-DDPP •P
/DDPP.P-BBPQ.Q
I-BCPQ. P, DCPP. Q
IDCPP •1'-BCPQ • Q
jCIPR. P-BI1'Q. Q
ICCPR.R-BBPR.R
ICCPR. Q-BCPR •P
jCBPR.R-BCPR.R
jCB1'R • Q-BDPR. P
ICIPQ. R-BDPR •R
jCDPQ. R-BIPR. R
jCCPQ.R-CBPP.R
/CCPQ.Q-CCPP.P
/CCPP.Q-CCPQ.1'
jCCPQ.P-CCPP.Q
JCBPQ.Q-CDPP.P
jCDPP.Q-CBPQ.P
jCBPQ. P-CDPP. Q
jCDPP. R-CIPP. R
/BBPP. P-DDPQ. R
IBBPP. Q-DDPQ. Q
/BDPP • Q-BDPQ •Q
JBBPQ. Q-DD1'P.Q
j -HCPQ • P, DCPP • R
I-BCPQ. Q.ocre, Q
ICIPR. Q-BIPQ. Q
jBBPR .P-CDPR.R
jCDPR. R-BBPR.P

Appendix: Ill: Sample of print-outs by Program III 13* 151-::::.XX ;;:::.VA
(no quantifiers) QED

'" 13. IDENTITY 1
13* 16 j-B:::::XY • ::o::YX 1

13*lj::::XY-IGX. GY 1
1j=XY-=YX =VA 2

1jGX, =XY-GY =VA 2
1 YX-=XY =VA 3

QED QED

13*12/=XY-BGX • GY 1
13*17/::::XY. =YZ-:::::XZ :::VA 1

l/GX, =X¥-GY =VA 2
QED

l/GY, =XY-GX =VA 3 13*171!=XY, =XZ-:::YZ =VA 1
QED QED

13*13/GX. =XY-GY =VA 1 13*l72/=YX, =ZX-=YZ =VA 1
QED QED

13*14jGX, FGY-F:::XY 1 13*18j=::XY. F=XZ-F=YZ 1
l/GX-F=XY, GY 2 l/=XY-F=YZ, ==.XZ 2
2/=XY, GX-GY =VA 3 2/=YZ, =XY-=XZ =VA 3

QED QED 19

IBM JOURNAL"JANUARY 1960

13
VA 14

15
16
17

VA 18
19
20
21
22
23

VA 24
25
26
27

VA 28
29
30
31

VA 32
33
34
35

VA 36

12/=XY, GY-GX, FGX
13/GX, =Xl', GY-GX
l1/F=XY, GY-DGX .FGX
15/GY-DGX .FGX, =XY
16/GY-GX, FGX, =XY
17/GX, GY-GX, =XY
I/FGY-BDGX.FGX .. D=Xl' .F=XY
19/-BDGX. FGX •• D=XY . F=XY, Gl'
20jDGX .FGX-D=XY. F=XY, GY
21/GX-D=XY. F=XY, GY
22/GX-=XY, F=XY, ey
23/=XY, GX-=XY, GY
21jFGX-D=XY .F=Xl', GY
25 j-D=XY • F=XY, GY, ex
26j-=XY, F==XY, GY, GX
27 /=XY-==XY, GY, ex
20/D=XY. F=XY-Dex. rex, GY
29/=Xl'-DGX. FGX, GY
30/==XY-GX, FGX, GY
31/GX, =XY-GX, GY
29/F==XY-DGX. FGX, GY
33j-DGX, FGX. GY, ==XY
34j-GX, FGX, GY, =XY
35/GX-GX, GY, =XY

QED

1
2
3
4
5

VA 6
7
8
9

VA 10
11
12

1
2
3

VA 4
5

=VA 6
VA 7

8
9

10
VA 11
VA 12

13* 194/-BCGX . =Xl' •.. CGX .. CGl' • =Xl'
I/CGX. =Xl'-CGX .. CGl'. =Xl'
2/GX, =XY-CGX .. CGQ. ::::Xl'
3/GX, =Xl'-GX
3/GX, =XY-CGl'. =Xl'
5/GX, =Xl'-Gl'
5/GX, =Xl'-=Xl'
I/CGX .• CGl'. =Xl'-CGX. =Xl'
8/GX. CGl'. =Xl'-CGX. =Xl'
9/GX, Gl', =XY-CGX. =Xl'
IO/GX, GY, =Xl'-GX
IO/GX, Gl', =XY-=XY

QED

13*3/DGY .FGl'-BDGX .FGX .. D=Xl' .F=XY
I/Gl'-BDGX .FGX •• D=XY. F=XY
21DGX .FGX, GY-D=XY .F=XY
3/GX, GY-D=XY .F::::Xl'
4/GX, GY-=Xl', F=XY
5/=XY, GX, GY-=Xl'
3/FGX, Gl'-D=XY. F=XY
7/Gl'-D=XY .F=XY, GX
8/GY-=Xl',F=Xl', GX
9/=Xl', GY-=XY, GX
2/D=XY .F=XY, Gl'-DGX .FGX
II/=XY, GY-DGX, FGX

Appendix IV: Sample of print-outs by Program III lO/FGUW-EXFAYGXY 11
(the AE predicate calculus) 11 j-EXFAYGXY, GUW 12

IO*25jAXGX-EXGX 1 12j-FAYG3l', GUW 13

l/GI-EXGX 2 13/AYG3Y-GUW 14

2/GI-G2 NOT 3 14/G34-GUW NOT 15

2/GS-GS VA 3 14/GUW-GUW VA 15

QED 7jGST-GST VA 8
QED

l1';'26/EXAYGXY-AYEXGXY 1
13*22/-BEZEWC==ZX .. C=WY. GZW ..• GXY 1IjAYGSY-AYEXGXI' 2

2/GSI-AYEXGXY 3
1/ jEZEWC==ZX •• C=WY. GZW-GXI' 2

3/GSI-EXGXT 4
2/EWC=SX •. C= WI' . GSW-GXI' 3

4/GSI-G2T NOT 5
3/C=SX •• C=TY • GST-GXI' 4

4/GST-GST VA 5 4/=SX. C=TY. GST-GXY 5

QED 5/=SX, =TY, GST-GXY =VA 6
I/GXI'-EZEWC=ZX .. C= WI'. GZW 7

11*501/-BEXFAI'GXI' . EXEYFGXY 1 7 jGXI'-EWC=lX .. C=WY. GIW 8
l/EXFAYGXI'-EXEYFGXY 2 8/GXI'-C=lX •. C=2Y. G12 9
2/FAI'GSY-EXEYFGXI' 3 9/GXI'-=IX NOT 10
3/-EXEYFGXY, AYeSI' 4 9/GXY-C=2I'. G12 11
4/-EYFGI Y, AYGSI' 5 1l/GXI'-=2Y NOT 12
5/-FG12,AYGSY 6 11/GXY-G12 NOT 13
6/G12-AI'GSY 7 ll/GXI'-GXY VA 13
7/G12-GST NOT .g 11/GXY-=YY =VA 12
l/EXEYFGXY-EXFAYGXY 9 9/GXY-=XX =VA 10

20 9jEYFGUY-EXFAYGXY 10 QED

IBM JOURNAL' JANUARY 1960

Appendix V: Different methods for the AE predicate
calculus

(EX) (Y) (GXYv GYX) --+ (Z)(EW)GZW (1)
Method Qp.

(1) GXl v G1X --+GZ2 (2)
(2) GXl--+GZ2 NOT (3)
(2) GIX --+ GZ2 NOT (4)
This is not valid since (3) and (4) are not both valid no
matter whether, for (l, 2), we substitute (X, X), (X, Z),
(Z, X) or (Z, Z).

~-~-----~ - --

Appendix VI: An example of Church

Ex. 3.
(X)(EY) {[JX=(JY :J GY)]&[GX=(JY:J HY)]&
[HX = «(JY :J GY) :J HY)]} --+ (Z)(/Z & GZ & HZ)

(1)

This is a sequent in the monadic predicate calculus. It
is not of the AE form but its miniscope forms must be in
the AE form. As a result, this can be proved either by
Qp or by Q, though not by Qq or Qr. It seems more tedi
ous to use Qp than Q.

To bring (l) into the miniscope form, we have to
eliminate the occurrences of ""'". Then we have to bring
the quantifier-free part of the antecedent into a disjunc
tive normal form, distri bute (EY) and separate out those
parts of the scope of every occurrence of (EY) which
contains the variable X. Then we have to bring the new
antecedent minus the initial (X) into a conjunctive
normal form and distribute (X) in the same way. The
reader may wish to convince himself how complex the
whole procedure is. The separation of quantifiers in the
consequent is, of course, easy. After the separation of
quantifiers, the resulting sequent in the miniscope form
is very long. The remaining steps, while easy, are also
tedious.

On the other hand, if method Q is used instead, the
proof is not so lengthy. By hand, it is even easier by Qf.
(1) Jl =(111 :J GIl), G1 =(111 :J Hfi),

H1;=«HI1:J Gfl):J HF1)--+JX &GX &HX
(2)

We may substitute for 1, X, IX, 12X , j3X, et cetera to
get 51' S2, S3' S4' et cetera and test for validity 81, 51VS2'
S1VS2VSg, SIVS2VS3v84' et cetera. For this purpose it is

Method Qq.
(1) GX1 v G1X GZ2 (2)
(2) GXXvGXX, GXZvGZX--+GZX, GZZ (3)
(3) GXX, GXZ--+GZX,GZZ NOT (4)
(3) GXX,GZX--+GZX,GZZ VA (5)
(3) GXX, GXZ --+ GZX, GZZ NOT (6)
(3) GXX, GZX--+GZX, GZZ VA (7)
This immediately suggests a simplification since (4) and
(6), (5) and (7) are the same. The sequent (1) is not
a theorem since (4) and (6) are not valid.
Method Qr. Proceed as in Qp, and then test the disjunc
tion of the two conjunctions which is equivalent to the
conjunction of (4), (5), (6), (7). Hence, again, (1) is
not valid.

sufficient to find a disjunction such that any interpreta
tion (truth-value assignment) which makes the antece
dents of all the disjunctants true, will make the
consequents of all the disjunctants true. It turns out that
the disjunction of S1 to S1 does this. If one is doing this
by hand, it is easier to argue, for example from IX=
(JIX:J GIX) that if IX is false, then IIX must be true
and GfX must be false. In this way, one would see that
it is not possible to make all the antecedents of 51 to 57
true without also making all their consequents true.

A simple consequence of Ex. 1 may illustrate that
sometimes Qq is preferable to Qp:
Ex. 4.
(EY) (X) {[JX= (JY:J GY)] & [GX """ (JY:J HY)] &
[HX=«(JY:J GY) :J HY)]} --+(Z) (JZ & GZ &HZ).
This is in the AE form, though not in the miniscope
form. The proof of this is easier than Ex. 3 no matter
which method we use. Nonetheless the proof by Qq
seems considerably shorter than the proof by Qp which
still includes similar (though somewhat simpler) steps,
as with Ex. 3. The proof by Qq is quite easy since we
need only drop quantifiers, substitute 1 for Z and verify
that:
JY=(JY:J GY), GY=(JY:J HY),
HY = «(JY :J GY) :J HY), IZ == (JY J GY),
GZ=(JY:J HY), HZ=«JY J GY)::J lly)--+
JZ&GZ&HZ.
The verification for this is quite easy. Thus, we wish to
show that if all clauses of the antecedent are true, then
JZ, GZ, HZ are all true. By the first clause, lY and GY
are true. Hence, by the fourth clause, JZ is true; by the
second clause, HY is true. Hence, by the fifth and the
sixth clauses, GZ and HZ are true. 21

IBM JOURNAL-JANUARY 1960

22

Appendix VII: An example of Quine

Ex. 5. -4 (EY) (Z) (EW) {[GYX & (GYW & GWY)] v
[- GYX & - (GYZ & GZY)]} (1)

(1) -4GlX&(GI2&G2l),-GlX&-(Glfl&
Gfll) (2)

(2) GlX -+ GIX (3)
(2) Glfl, Gfll-+GlX (4)
(2) GlX -4 Gl2 (5)
(2) GlX~ G2l (6)
(2) Glfl, Gfll -4 Gl2 (7)
(2) GIfl, Gfll-+ G2l (8)
Now we wish to make substitutions on (3) - (8). Since
(3) is valid for all substitutions, it can be omitted. We
obtain Sl' S2, S3' S<\ et cetera by substituting, for 0, 2),
(X, X), (X, fX), (fX, X), (IX, fX), et cetera. In form
ing each substitution instance, valid sequents and repeti
tions of a same sequent can be omitted so that, for exam
ple, the conjunctive clauses of Sl' S2' S3 are as follows.
81 : GXjX,GfXX -4 GXX.
S2: GXjX,GjXX -? GXX; GXX -4 GX/X;

GXX-+GjXX.
Sa: GfXj2X,GPXfX -? GfXX,' GfXX -4 G/XX;

G/XX~ GXfX; GjXj2X,Gj2X/X -4 GX/X.

References

1. H. Wang, "A Variant to Turing's Theory of Computing
Machines," Journal ACM, 4, 88-92 (January 1957).

2. A. W. Burks, D. W. Warren, and J. B. Wright, "An
Analysis of a Logical Machine Using Parenthesis-Free
Notation," Mathematical Tables and Other Aids to
Computation, 8, 53-57 (April, 1954).

3. G. E. Collins, "Tarski's Decision Method for Elemen
tary Algebra," Proceedings of the Summer Institute of
Symbolic Logic at Cornell University, p, 64 (1957).

4. M. Davis, "A Program for Presburger's Algorithm,"
Ibid., p. 215.

5. H. Gelernter, "Theorem Proving by Machine," lbid., p.
305.

6. For example, A. Newell, J. C. Shaw, and H. A. Simon,
"Empirical Explorations of the Logic Theory Machine:
A Case Study in Heuristics," Report P-951, Rand Cor
poration, March, 1957,48 pp.

7. Ibid., p. 26 and p. 28.
8. lbid., p. 8 and p, 10.
9. J. Herbrand, Recherches sur la Theorie de 10 De

monstration, Traveaux de la Societe des Sciences de
Varsovie, No. 33, 1930, 128 pp.

10. G. Gentzen, "Untersuchungen tiber das Logische Schlies
sen," Math. Zeitschrijt, 39,176-210,405-431 (1934-35).

11. D. Hilbert and P. Bernays, Grundlagen der Mathematik,
vol. II, Berlin, 1939

12. B. Dreben, "On the Completeness of Quantification
Theory," Proc, Nat. Acad. Sci. U.S.A., 38, 1047-1052
(1952).

13. E. W. Beth, La Crise de la Raison et fa Logique, Paris
et Louvain. 1957.

14. K. J. J. Hintikka, "Two Papers on Symbolic Logic,"
Acta Philos. Fennica, 8,7-55 (1955).

15. K. Schutte, "Ein System des Verknupfenden Schliessens,"
Archiv f. Math. Logik u, Grundlagenjorschung, 2, 375
387 (1955).

It can be verified that 51vS2vSS is a tautology. If GXX is
true, then Sl is true. If GXX is false but GXfX or G/XX
is false, then 82 is true. If both GXfX and GfXX are
true, then S3 is true.

While the verification is easy here, it appears that as
the number of conjunctions increases, the test for the
disjunction of all conjunctions can get mechanically
cumbersome. A presumably more manageable method of
testing suggests itself.

Make two lists for Sl' one for the antecedents, one for
the consequents:
(AI) GX/X, GfXX.
(el) GXX.
Test whether every string in (C1) is contained in some
string in (AI)' If yes, a proof is obtained. If not, form
two lists for 52:
(A 2) GX/X, GfXX; GXX.
(C2) GXX; GX/X; G/XX.

Test whether every string obtained by joining a string of
(C,) to one of (C2) is contained in every string obtained
by combining a string from (Ai) with a string from (A 2) ·

If yes, a proof is obtained. Otherwise, form two lists for
S~ and continue.

It is not hard to convince oneself that this procedure
is equivalent to the usual procedure for testing the valid
ity of S1' SlVS2, SlVS2V8a, et cetera.

16. A. Church, Introduction to Mathematical Logic, 1.
Princeton, 1956.

17. W. V. Quine, Methods of Logic, New York, 1950.
18. Herbrand, op. cit., p. 21.
19. Quine, op, cit., pp. 101-107.
20. Church, op, cit., p. 262, 46.12 (3).
21. Compare, e.g., Church, op, cit. p. 249.
22. The example in Appendix VII is from Quine, Mathe-

matical Logic, *180 and *181, pp. 129-130.
23. Compare Herbrand, op, cit., Ch, V.
24. Compare, e.g., the references to Schiitte and Beth.
25. D. Konig, Theorie der Graphen, Leipzig, 1936, p. 81.
26. Church, op. cit., Case X, p. 257.
27. E. Landau, Grundlagen der Analysis, Leipzig, 1930.
28. G. H. Hardy and E. M. Wright, Introduction to the

Theory of Numbers. Oxford, 1954.
29. G. H. Hardy, A Course at Pure Mathematics, various

editions.
30. O. Veblen and 1. W. Young, Projective Geometry, 191f1.
31. See, e.g., G. Kreisel and H. Putnam, "Ein Unableitbars

beweismethode," Arkiv f. Math. Logik u. Grundlagen
[orschung, 3, 74-78 (1957).

32. A. N. Prior, Formal Logic, Oxford, 1954.
33. S. Linia1 and B. L. Post, "Recursive Unsolvability of

Axioms Problems of the Propositional Calculus," Bull.
Am. Math. Soc., 55, 50 (1949).

34. See, e.g., Church, op, cit., p. 339.
35. E. P. Specker, "The Axiom of Choice in Quine's New

Foundations for Mathematical Logic," Proc, Nat. Acad.
Sci. U.S.A. 39,972-975 (1953).

36. G. Polya, Mathematics and Plausible Reasoning, Ox
ford, 1954.

Received December 22,1958

IBM JOURNAL· JANUARY 1960

