G4 Prover
Result of the test for sequent p/\(q\/r) <--> (p/\q)\/(p/\r)
G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4
This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com),
from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp).
Type "help." if you need some help.
fol(g4i)> fol(g4i).
yes
fol(g4i)> output(pretty).
yes
fol(g4i)> p/\q\/r<-->(p/\q)\/p/\r.
Trying to prove with threshold = 0 1
Succeed in proving p/\q\/r --> (p/\q)\/p/\r (8 msec.)
pretty:1 =
--------- Ax --------- Ax --------- Ax --------- Ax
p,q --> p p,q --> q p,r --> p p,r --> r
----------------------- R/\ ----------------------- R/\
p,q --> p/\q p,r --> p/\r
-------------------- R\/ -------------------- R\/
p,q --> (p/\q)\/p/\r p,r --> (p/\q)\/p/\r
------------------------------------------------- L\/
p,q\/r --> (p/\q)\/p/\r
------------------------ L/\
p/\q\/r --> (p/\q)\/p/\r
Trying to prove with threshold = 0
Succeed in proving (p/\q)\/p/\r --> p/\q\/r (4 msec.)
pretty:2 =
--------- Ax --------- Ax
p,q --> q p,r --> r
--------- Ax ------------ R\/ --------- Ax ------------ R\/
p,q --> p p,q --> q\/r p,r --> p p,r --> q\/r
-------------------------- R/\ -------------------------- R/\
p,q --> p/\q\/r p,r --> p/\q\/r
---------------- L/\ ---------------- L/\
p/\q --> p/\q\/r p/\r --> p/\q\/r
------------------------------------------------ L\/
(p/\q)\/p/\r --> p/\q\/r
yes
fol(g4i)> quit.
yes
Exit from Sequent Calculus Prover...
Total CPU time = 17 msec.
true