G4 Prover

Result of the test for sequent p/\(q\/r) <--> (p/\q)\/(p/\r)



G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4 This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com), from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp). Type "help." if you need some help. fol(g4i)> fol(g4i). yes fol(g4i)> output(pretty). yes fol(g4i)> p/\q\/r<-->(p/\q)\/p/\r. Trying to prove with threshold = 0 1 Succeed in proving p/\q\/r --> (p/\q)\/p/\r (8 msec.) pretty:1 = --------- Ax --------- Ax --------- Ax --------- Ax p,q --> p p,q --> q p,r --> p p,r --> r ----------------------- R/\ ----------------------- R/\ p,q --> p/\q p,r --> p/\r -------------------- R\/ -------------------- R\/ p,q --> (p/\q)\/p/\r p,r --> (p/\q)\/p/\r ------------------------------------------------- L\/ p,q\/r --> (p/\q)\/p/\r ------------------------ L/\ p/\q\/r --> (p/\q)\/p/\r Trying to prove with threshold = 0 Succeed in proving (p/\q)\/p/\r --> p/\q\/r (4 msec.) pretty:2 = --------- Ax --------- Ax p,q --> q p,r --> r --------- Ax ------------ R\/ --------- Ax ------------ R\/ p,q --> p p,q --> q\/r p,r --> p p,r --> q\/r -------------------------- R/\ -------------------------- R/\ p,q --> p/\q\/r p,r --> p/\q\/r ---------------- L/\ ---------------- L/\ p/\q --> p/\q\/r p/\r --> p/\q\/r ------------------------------------------------ L\/ (p/\q)\/p/\r --> p/\q\/r yes fol(g4i)> quit. yes Exit from Sequent Calculus Prover... Total CPU time = 17 msec. true

Back to g4-prover

Maintained by Joseph Vidal-Rosset