G4 Prover

Result of the test for sequent p(a)\/p(b) --> X#p(X)



G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4 This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com), from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp). Type "help." if you need some help. fol(g4i)> fol(g4i). yes fol(g4i)> output(pretty). yes fol(g4i)> p(a)\/p(b)-->_5594#p(_5594). Trying to prove with threshold = 0 1 Succeed in proving p(a)\/p(b) --> _5594#p(_5594) (23 msec.) pretty:1 = ------------- Ax ------------- Ax p(a) --> p(a) p(b) --> p(b) --------------- R# --------------- R# p(a) --> X#p(X) p(b) --> X#p(X) ----------------------------------- L\/ p(a)\/p(b) --> X#p(X) yes fol(g4i)> quit. yes Exit from Sequent Calculus Prover... Total CPU time = 26 msec. true

Back to g4-prover

Maintained by Joseph Vidal-Rosset