G4 Prover

Result of the test for sequent n(0), X@(n(X)-> n(s(X))) --> n(s(s(0)))

G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4 This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com), from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp). Type "help." if you need some help. fol(g4i)> fol(g4i). yes fol(g4i)> output(pretty). yes fol(g4i)> n(0),_5584@(n(_5584)->n(s(_5584)))-->n(s(s(0))). Trying to prove with threshold = 0 1 2 Succeed in proving n(0),_5584@(n(_5584)->n(s(_5584))) --> n(s(s(0))) (30 msec.) pretty:1 = -------------------------------------------------------- Ax n(s(s(0))),n(0),n(s(0)),X@(n(X)->n(s(X))) --> n(s(s(0))) ----------------------------------------------------------------- L0->1 n(s(0)),n(0),n(s(0))->n(s(s(0))),X@(n(X)->n(s(X))) --> n(s(s(0))) ----------------------------------------------------------------- L@ n(s(0)),n(0),X@(n(X)->n(s(X))) --> n(s(s(0))) --------------------------------------------------- L0->1 n(0),n(0)->n(s(0)),X@(n(X)->n(s(X))) --> n(s(s(0))) --------------------------------------------------- L@ n(0),X@(n(X)->n(s(X))) --> n(s(s(0))) yes fol(g4i)> quit. yes Exit from Sequent Calculus Prover... Total CPU time = 33 msec. true

Back to g4-prover

Maintained by Joseph Vidal-Rosset