```    G4 Prover
Result of the test for sequent n(0), X@(n(X)-> n(s(X))) -->  n(s(s(0)))

G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4
This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com),
from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp).
Type "help." if you need some help.
fol(g4i)> fol(g4i).
yes
fol(g4i)> output(pretty).
yes
fol(g4i)> n(0),_5584@(n(_5584)->n(s(_5584)))-->n(s(s(0))).
Trying to prove with threshold = 0 1 2
Succeed in proving n(0),_5584@(n(_5584)->n(s(_5584))) --> n(s(s(0))) (30 msec.)
pretty:1 =
-------------------------------------------------------- Ax
n(s(s(0))),n(0),n(s(0)),X@(n(X)->n(s(X))) --> n(s(s(0)))
----------------------------------------------------------------- L0->1
n(s(0)),n(0),n(s(0))->n(s(s(0))),X@(n(X)->n(s(X))) --> n(s(s(0)))
----------------------------------------------------------------- L@
n(s(0)),n(0),X@(n(X)->n(s(X))) --> n(s(s(0)))
--------------------------------------------------- L0->1
n(0),n(0)->n(s(0)),X@(n(X)->n(s(X))) --> n(s(s(0)))
--------------------------------------------------- L@
n(0),X@(n(X)->n(s(X))) --> n(s(s(0)))
yes
fol(g4i)> quit.
yes
Exit from Sequent Calculus Prover...
Total CPU time = 33 msec.
true

Back to g4-prover
Maintained by  Joseph Vidal-Rosset
```