G4 Prover

Result of the test for sequent X@(p(X)/\q(X)) <--> X@p(X) /\ X@q(X)



G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4 This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com), from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp). Type "help." if you need some help. fol(g4i)> fol(g4i). yes fol(g4i)> output(pretty). yes fol(g4i)> _5580@(p(_5580)/\q(_5580))<-->_5580@p(_5580)/\_5580@q(_5580). Trying to prove with threshold = 0 1 Succeed in proving _15658@(p(_15658)/\q(_15658)) --> _15658@p(_15658)/\_15658@q(_15658) (830 msec.) pretty:1 = --------------------------------- Ax --------------------------------- Ax p(Y),q(Y),X@(p(X)/\q(X)) --> p(Y) p(Z),q(Z),X@(p(X)/\q(X)) --> q(Z) ---------------------------------- L/\ ---------------------------------- L/\ p(Y)/\q(Y),X@(p(X)/\q(X)) --> p(Y) p(Z)/\q(Z),X@(p(X)/\q(X)) --> q(Z) ---------------------------------- L@ ---------------------------------- L@ X@(p(X)/\q(X)) --> p(Y) X@(p(X)/\q(X)) --> q(Z) ------------------------- R@ ------------------------- R@ X@(p(X)/\q(X)) --> X@p(X) X@(p(X)/\q(X)) --> X@q(X) ----------------------------------------------------------------- R/\ X@(p(X)/\q(X)) --> X@p(X)/\X@q(X) Trying to prove with threshold = 0 1 Succeed in proving _15658@p(_15658)/\_15658@q(_15658) --> _15658@(p(_15658)/\q(_15658)) (2510 msec.) pretty:2 = --------------------------- Ax --------------------------- Ax p(Y),X@p(X),X@q(X) --> p(Y) X@p(X),q(Y),X@q(X) --> q(Y) --------------------------- L@ --------------------------- L@ X@p(X),X@q(X) --> p(Y) X@p(X),X@q(X) --> q(Y) ------------------------------------------------------ R/\ X@p(X),X@q(X) --> p(Y)/\q(Y) -------------------------------- R@ X@p(X),X@q(X) --> X@(p(X)/\q(X)) --------------------------------- L/\ X@p(X)/\X@q(X) --> X@(p(X)/\q(X)) yes fol(g4i)> quit. yes Exit from Sequent Calculus Prover... Total CPU time = 3347 msec. true

Back to g4-prover

Maintained by Joseph Vidal-Rosset