G4 Prover
Result of the test for sequent X@(p(X)/\q(X)) <--> X@p(X) /\ X@q(X)
G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4
This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com),
from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp).
Type "help." if you need some help.
fol(g4i)> fol(g4i).
yes
fol(g4i)> output(pretty).
yes
fol(g4i)> _5580@(p(_5580)/\q(_5580))<-->_5580@p(_5580)/\_5580@q(_5580).
Trying to prove with threshold = 0 1
Succeed in proving _15658@(p(_15658)/\q(_15658)) --> _15658@p(_15658)/\_15658@q(_15658) (830 msec.)
pretty:1 =
--------------------------------- Ax --------------------------------- Ax
p(Y),q(Y),X@(p(X)/\q(X)) --> p(Y) p(Z),q(Z),X@(p(X)/\q(X)) --> q(Z)
---------------------------------- L/\ ---------------------------------- L/\
p(Y)/\q(Y),X@(p(X)/\q(X)) --> p(Y) p(Z)/\q(Z),X@(p(X)/\q(X)) --> q(Z)
---------------------------------- L@ ---------------------------------- L@
X@(p(X)/\q(X)) --> p(Y) X@(p(X)/\q(X)) --> q(Z)
------------------------- R@ ------------------------- R@
X@(p(X)/\q(X)) --> X@p(X) X@(p(X)/\q(X)) --> X@q(X)
----------------------------------------------------------------- R/\
X@(p(X)/\q(X)) --> X@p(X)/\X@q(X)
Trying to prove with threshold = 0 1
Succeed in proving _15658@p(_15658)/\_15658@q(_15658) --> _15658@(p(_15658)/\q(_15658)) (2510 msec.)
pretty:2 =
--------------------------- Ax --------------------------- Ax
p(Y),X@p(X),X@q(X) --> p(Y) X@p(X),q(Y),X@q(X) --> q(Y)
--------------------------- L@ --------------------------- L@
X@p(X),X@q(X) --> p(Y) X@p(X),X@q(X) --> q(Y)
------------------------------------------------------ R/\
X@p(X),X@q(X) --> p(Y)/\q(Y)
-------------------------------- R@
X@p(X),X@q(X) --> X@(p(X)/\q(X))
--------------------------------- L/\
X@p(X)/\X@q(X) --> X@(p(X)/\q(X))
yes
fol(g4i)> quit.
yes
Exit from Sequent Calculus Prover...
Total CPU time = 3347 msec.
true