G4 Prover
Result of the test for sequent X#X#p(X) <--> X#p(X)
G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4
This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com),
from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp).
Type "help." if you need some help.
fol(g4i)> fol(g4i).
yes
fol(g4i)> output(pretty).
yes
fol(g4i)> _5580#_5580#p(_5580)<-->_5580#p(_5580).
Trying to prove with threshold = 0 1
Succeed in proving _13790#_13790#p(_13790) --> _13790#p(_13790) (1030 msec.)
pretty:1 =
------------- Ax
p(Z) --> p(Z)
--------------- R#
p(Z) --> X#p(X)
----------------- L#
Y#p(Y) --> X#p(X)
------------------- L#
X#X#p(X) --> X#p(X)
Trying to prove with threshold = 0 1
Succeed in proving _13790#p(_13790) --> _13790#_13790#p(_13790) (85 msec.)
pretty:2 =
----------------- Ax
X#p(X) --> X#p(X)
------------------- R#
X#p(X) --> X#X#p(X)
yes
fol(g4i)> quit.
yes
Exit from Sequent Calculus Prover...
Total CPU time = 1118 msec.
true