G4 Prover

Result of the test for sequent X#X#p(X) <--> X#p(X)



G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4 This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com), from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp). Type "help." if you need some help. fol(g4i)> fol(g4i). yes fol(g4i)> output(pretty). yes fol(g4i)> _5580#_5580#p(_5580)<-->_5580#p(_5580). Trying to prove with threshold = 0 1 Succeed in proving _13790#_13790#p(_13790) --> _13790#p(_13790) (1030 msec.) pretty:1 = ------------- Ax p(Z) --> p(Z) --------------- R# p(Z) --> X#p(X) ----------------- L# Y#p(Y) --> X#p(X) ------------------- L# X#X#p(X) --> X#p(X) Trying to prove with threshold = 0 1 Succeed in proving _13790#p(_13790) --> _13790#_13790#p(_13790) (85 msec.) pretty:2 = ----------------- Ax X#p(X) --> X#p(X) ------------------- R# X#p(X) --> X#X#p(X) yes fol(g4i)> quit. yes Exit from Sequent Calculus Prover... Total CPU time = 1118 msec. true

Back to g4-prover

Maintained by Joseph Vidal-Rosset