G4 Prover

Result of the test for sequent X#(p(X)\/q(X)) <--> X#p(X) \/ X#q(X)



G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4 This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com), from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp). Type "help." if you need some help. fol(g4i)> fol(g4i). yes fol(g4i)> output(pretty). yes fol(g4i)> _5580#(p(_5580)\/q(_5580))<-->_5580#p(_5580)\/_5580#q(_5580). Trying to prove with threshold = 0 1 Succeed in proving _15628#(p(_15628)\/q(_15628)) --> _15628#p(_15628)\/_15628#q(_15628) (3409 msec.) pretty:1 = ------------- Ax ------------- Ax p(Y) --> p(Y) q(Y) --> q(Y) --------------- R# --------------- R# p(Y) --> X#p(X) q(Y) --> X#q(X) ----------------------- R\/ ----------------------- R\/ p(Y) --> X#p(X)\/X#q(X) q(Y) --> X#p(X)\/X#q(X) ---------------------------------------------------- L\/ p(Y)\/q(Y) --> X#p(X)\/X#q(X) --------------------------------- L# X#(p(X)\/q(X)) --> X#p(X)\/X#q(X) Trying to prove with threshold = 0 1 Succeed in proving _15628#p(_15628)\/_15628#q(_15628) --> _15628#(p(_15628)\/q(_15628)) (64 msec.) pretty:2 = ------------- Ax ------------- Ax p(Y) --> p(Y) q(Z) --> q(Z) ------------------- R\/ ------------------- R\/ p(Y) --> p(Y)\/q(Y) q(Z) --> p(Z)\/q(Z) ----------------------- R# ----------------------- R# p(Y) --> X#(p(X)\/q(X)) q(Z) --> X#(p(X)\/q(X)) ------------------------- L# ------------------------- L# X#p(X) --> X#(p(X)\/q(X)) X#q(X) --> X#(p(X)\/q(X)) ------------------------------------------------------- L\/ X#p(X)\/X#q(X) --> X#(p(X)\/q(X)) yes fol(g4i)> quit. yes Exit from Sequent Calculus Prover... Total CPU time = 3480 msec. true

Back to g4-prover

Maintained by Joseph Vidal-Rosset