```    G4 Prover
Result of the test for sequent (p->r)/\(q->r) <--> (p\/q)->r

G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4
This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com),
from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp).
Type "help." if you need some help.
fol(g4i)> fol(g4i).
yes
fol(g4i)> output(pretty).
yes
fol(g4i)> (p->r)/\q->r<-->(p\/q)->r.
Trying to prove with threshold = 0
Succeed in proving (p->r)/\q->r --> (p\/q)->r (2 msec.)
pretty:1 =
-------------- Ax        -------------- Ax
r,p,q->r --> r           r,p->r,q --> r
----------------- L0->1  ----------------- L0->1
p,p->r,q->r --> r        q,p->r,q->r --> r
------------------------------------------ L\/
p\/q,p->r,q->r --> r
----------------------- R->
p->r,q->r --> (p\/q)->r
-------------------------- L/\
(p->r)/\q->r --> (p\/q)->r
Trying to prove with threshold = 0
Succeed in proving (p\/q)->r --> (p->r)/\q->r (2 msec.)
pretty:2 =
-------------- Ax        -------------- Ax
r,p,q->r --> r           r,p->r,q --> r
----------------- L0->1  ----------------- L0->1
p,p->r,q->r --> r        q,p->r,q->r --> r
------------------ R->   ------------------ R->
p->r,q->r --> p->r       p->r,q->r --> q->r
------------------------------------------- R/\
p->r,q->r --> (p->r)/\q->r
-------------------------- L\/->(3)
(p\/q)->r --> (p->r)/\q->r
yes
fol(g4i)> quit.
yes
Exit from Sequent Calculus Prover...
Total CPU time = 8 msec.
true

Back to g4-prover
Maintained by  Joseph Vidal-Rosset
```