G4 Prover

Result of the test for sequent (p->r)/\(q->r) <--> (p\/q)->r



G4 Prover: a Prolog Prover for Roy Dyckhoff's Sequent Calculus G4 This prover is a fork made by Joseph Vidal-Rosset (joseph.vidal-rosset@gmail.com), from seqprover.pl, the sequent prover for CL-X, written by Naoyuki Tamura (tamura@kobe-u.ac.jp). Type "help." if you need some help. fol(g4i)> fol(g4i). yes fol(g4i)> output(pretty). yes fol(g4i)> (p->r)/\q->r<-->(p\/q)->r. Trying to prove with threshold = 0 Succeed in proving (p->r)/\q->r --> (p\/q)->r (2 msec.) pretty:1 = -------------- Ax -------------- Ax r,p,q->r --> r r,p->r,q --> r ----------------- L0->1 ----------------- L0->1 p,p->r,q->r --> r q,p->r,q->r --> r ------------------------------------------ L\/ p\/q,p->r,q->r --> r ----------------------- R-> p->r,q->r --> (p\/q)->r -------------------------- L/\ (p->r)/\q->r --> (p\/q)->r Trying to prove with threshold = 0 Succeed in proving (p\/q)->r --> (p->r)/\q->r (2 msec.) pretty:2 = -------------- Ax -------------- Ax r,p,q->r --> r r,p->r,q --> r ----------------- L0->1 ----------------- L0->1 p,p->r,q->r --> r q,p->r,q->r --> r ------------------ R-> ------------------ R-> p->r,q->r --> p->r p->r,q->r --> q->r ------------------------------------------- R/\ p->r,q->r --> (p->r)/\q->r -------------------------- L\/->(3) (p\/q)->r --> (p->r)/\q->r yes fol(g4i)> quit. yes Exit from Sequent Calculus Prover... Total CPU time = 8 msec. true

Back to g4-prover

Maintained by Joseph Vidal-Rosset