| \begin{prooftree}\AxiomC{}\RightLabel{\scriptsize{$Ax.$}}\UnaryInfC{$A, \Gamma \vdash A$} \end{prooftree} |
\begin{prooftree}\AxiomC{$A$}\RightLabel{\scriptsize{$R$}}\UnaryInfC{$A$} \end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$A, B, \Gamma \vdash C$} \RightLabel{\(\scriptsize{L0\to}\)} \UnaryInfC{$A \to B, A, \Gamma \vdash C$}\end{prooftree} |
\begin{prooftree}\AxiomC{$A \to B$} \AxiomC{$A$} \RightLabel{\scriptsize{$\to E$}}\BinaryInfC{$B$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$A \to (B \to C), \Gamma \vdash D$}\RightLabel{\(\scriptsize{L\land\to}\)}\UnaryInfC{$(A \land B) \to C,\Gamma \vdash D$}\end{prooftree} |
\begin{prooftree}\AxiomC{$(A \land B) \to C$}\RightLabel{\scriptsize{$\land\to E$}}\UnaryInfC{$A \to (B \to C)$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$A \to C, B \to C, \Gamma \vdash D$}\RightLabel{\(\scriptsize{L\lor\to}\)}\UnaryInfC{$(A \lor B) \to C, \Gamma \vdash D$}\end{prooftree} |
\begin{prooftree}\AxiomC{$(A \lor B) \to C$}\RightLabel{\scriptsize{$\lor\to E$}}\UnaryInfC{$(A \to C)$}\end{prooftree} \begin{prooftree}\AxiomC{$(A \lor B) \to C$}\RightLabel{\scriptsize{$\lor\to E$}}\UnaryInfC{$(B\to C)$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$A, B \to C,\Gamma \vdash B$}\AxiomC{$C,\Gamma \vdash D$}\RightLabel{\(\scriptsize{L\to\to}\)}\BinaryInfC{$(A \to B) \to C, \Gamma \vdash D$}\end{prooftree} |
\begin{prooftree}\AxiomC{$(A \to B) \to C$}\RightLabel{\scriptsize{$\to\to E$}}\UnaryInfC{$B \to C$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$(A \to B) \to B, \Gamma \vdash B$}\RightLabel{\scriptsize{\(DNE_{m}\)}}\UnaryInfC{$A , \Gamma \vdash B$}\end{prooftree} |
\begin{prooftree}\AxiomC{\scriptsize{$i$}}\noLine \UnaryInfC{$(A \to B) \to B$}\noLine\UnaryInfC{$\vdots$}\noLine\UnaryInfC{$B$}\RightLabel{\scriptsize{\(DNE_{m}\)}~\(i\)}\UnaryInfC{$A \to B$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$A, B, \Gamma \vdash C$}\RightLabel{\scriptsize{$L\land$}} \UnaryInfC{$A \land B, \Gamma \vdash C$}\end{prooftree} |
\begin{prooftree}\AxiomC{$A \land B$}\RightLabel{\scriptsize{$\land E$}} \UnaryInfC{$A$} \end{prooftree} \begin{prooftree}\AxiomC{$A \land B$}\RightLabel{\scriptsize{$\land E$}} \UnaryInfC{$B$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$A, \Gamma \vdash C$}\AxiomC{$B, \Gamma \vdash C$}\RightLabel{\scriptsize{$L\lor$}}\BinaryInfC{$A \lor B, \Gamma \vdash C$}\end{prooftree} |
\begin{prooftree}\AxiomC{$A \lor B$}\AxiomC{\scriptsize{1}}\noLine\UnaryInfC{$A$}\noLine\UnaryInfC{$\vdots$}\noLine\UnaryInfC{$C$}\AxiomC{\scriptsize{2}}\noLine\UnaryInfC{$B$}\noLine\UnaryInfC{$\vdots$}\noLine\UnaryInfC{$C$}\RightLabel{\scriptsize{$\lor E$ 1,2}}\TrinaryInfC{$C$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$A, \Gamma \vdash B$}\RightLabel{\scriptsize{$R\to$}}\UnaryInfC{$\Gamma \vdash A \to B$}\end{prooftree} |
\begin{prooftree}\AxiomC{\scriptsize{1}}\noLine\UnaryInfC{$A$} \noLine\UnaryInfC{$\vdots$}\noLine\UnaryInfC{$B$}\RightLabel{\scriptsize{$\to I$ 1}}\UnaryInfC{$A \to B$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$\Gamma \vdash A$}\AxiomC{$\Gamma \vdash B$}\RightLabel{\scriptsize{$R\land$}}\BinaryInfC{$\Gamma \vdash A \land B$}\end{prooftree} |
\begin{prooftree}\AxiomC{$A$}\AxiomC{$B$}\RightLabel{\scriptsize{$\land I$}}\BinaryInfC{$A \land B$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$\Gamma \vdash A$}\RightLabel{\scriptsize{$R\lor$}}\UnaryInfC{$\Gamma \vdash A \lor B$}\end{prooftree}\begin{prooftree} \AxiomC{$\Gamma \vdash B$}\RightLabel{\scriptsize{$R\lor$}}\UnaryInfC{$\Gamma \vdash A \lor B$}\end{prooftree} |
\begin{prooftree}\AxiomC{$A$}\RightLabel{\scriptsize{$\lor I$}}\UnaryInfC{$A \lor B$}\end{prooftree} \begin{prooftree}\AxiomC{$B$}\RightLabel{\scriptsize{$\lor I$}}\UnaryInfC{$A \lor B$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{}\RightLabel{\scriptsize{$L\bot$}}\UnaryInfC{$\bot, \Gamma \vdash C$}\end{prooftree} |
\begin{prooftree}\AxiomC{$\bot$}\RightLabel{\scriptsize{$\bot E$}}\UnaryInfC{$C$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$\lnot A, \Gamma \vdash \bot$}\RightLabel{\scriptsize{$IP$}}\UnaryInfC{$\Gamma \vdash A$}\end{prooftree} |
\begin{prooftree}\AxiomC{\scriptsize{1}}\noLine\UnaryInfC{$\lnot A$}\noLine\UnaryInfC{$\vdots$}\noLine\UnaryInfC{$\bot$}\RightLabel{\scriptsize{$IP$ 1}}\UnaryInfC{$A$}\end{prooftree} |
 |
| \begin{prooftree} \AxiomC{$ Ftt, \forall x Fxx ,\Gamma \vdash C $}\RightLabel{\scriptsize{$ L\forall $}}\UnaryInfC{$ \forall x Fxx, \Gamma \vdash C$}\end{prooftree} |
\begin{prooftree}\AxiomC{$\forall x Fxx$}\RightLabel{\scriptsize{$\forall E$}}\UnaryInfC{$Ftt$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$ \Gamma \vdash Ftt $}\RightLabel{\scriptsize{$ R\exists $}}\UnaryInfC{$\Gamma \vdash \exists y Fyt$}\end{prooftree} |
\begin{prooftree}\AxiomC{$ Ftt $}\RightLabel{\scriptsize{$\exists I$}}\UnaryInfC{$\exists y Fyt$}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$ \Gamma \vdash Fa $}\RightLabel{\scriptsize{$ R \forall $}}\UnaryInfC{$ \Gamma \vdash \forall x Fx $}\noLine\UnaryInfC{\(a\) = \textit{eigenvariable}} \end{prooftree} |
\begin{prooftree}\AxiomC{$Fa$} \RightLabel{\scriptsize{$ \forall I $}}\UnaryInfC{$ \forall x Fx $}\noLine\UnaryInfC{\(a\) = \textit{eigenvariable}}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$ Fa, \Gamma \vdash C$}\RightLabel{\scriptsize{$ L \exists $}}\UnaryInfC{$ \exists x Ax, \Gamma \vdash C $} \noLine\UnaryInfC{\(a\) = \textit{eigenvariable}}\end{prooftree} |
\begin{prooftree}\AxiomC{$ \exists x Fx $}\AxiomC{\scriptsize{$ i $}} \noLine \UnaryInfC{$ Fa $} \noLine \UnaryInfC{$ \vdots $} \noLine \UnaryInfC{$ G $} \RightLabel{\scriptsize{$ \exists E ~ i $}} \BinaryInfC{$ G $} \noLine\UnaryInfC{\(a\) = \textit{eigenvariable}}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$ \exists x (Fx \to P), \Gamma \vdash D $}\RightLabel{\scriptsize{\(CQ_{c}\)}}\UnaryInfC{$\forall x Fx \to P, \Gamma \vdash D $}\end{prooftree} |
\begin{prooftree}\AxiomC{$ \forall x Fx \to P $} \RightLabel{\scriptsize{\(CQ_{c}\)}}\UnaryInfC{$ \exists x(Fx \to P) $}\end{prooftree} |
 |
| \begin{prooftree}\AxiomC{$ \forall x (Fx \to P), \Gamma \vdash D $}\RightLabel{\scriptsize{\(CQ_{m}\)}}\UnaryInfC{$\exists x Fx \to P, \Gamma \vdash D $} \end{prooftree} |
\begin{prooftree}\AxiomC{$ \exists x Fx \to P $} \RightLabel{\scriptsize{\(CQ_{m}\)}}\UnaryInfC{$ \forall x(Fx \to P) $}\end{prooftree} |
 |